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Background

Why Study Red Clump (RC) Stars?

* Precise Distance Measurement:
RC stars are standard candles, offering precise distances (<6% uncertainty) up to ~10 kpc.

*Critical for studying the structure and evolution of the Milky Way.

 Overcoming Gaia’s Limitations:

“*Gaia parallax uncertainties increase quadratically with distance.
*RC stars complement Gaia data, especially in the distant Galaxy (>3 kpc).

loy = \/(%)20% = 7% = o,d*, where d is the distance, @ is the
parallax and d = 1/

04 = \/ (24)? 62 = 6, In (10)10"~M+9)/5 = g, In(10)d, where m is
O(m — M + 5)/5.

apparent magnitude, M 1s the absolute magnitude, and d = 1



Background

Research Challenges:

e Distinguishing RC stars from Red Giant Branch (RGB) stars is ditficult because they
have similar properties (Tett, log g).

e Asteroseismic methods (using AP and Av) are accurate but limited to small local
samples.

Objective of This Study:
Use photometric data and machine learning to identity RC stars with:
 High accuracy (low contamination).

 Broad Galactic coverage (inner bulge to distant halo).



Data

Key Approach:

Create Spectral Energy Distributions (SEDs) from 13 photometric bands and Gaia
parallaxes.

Gaia DR2: Parallaxes and photometry (G, BP, RP bands).
Pan-STARRSI1 (PS1): Photometry (g, r, 1, z, y bands).
2MASS: Infrared photometry (J, H, K bands).

ANIWISE: Mid-infrared photometry (W1, W2 bands).

Use machine learning (neural networks) to infer stellar parameters:
e Effective temperature (Teff).
e Surface gravity (log g).
e Asteroseismic parameters (AP, Av).
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Figure 1. In the top panel, we compare the synthetic spectra of an RGB and RC star. Specifically, we show two CN molecular bands that impact the y and
J photometry (top left) and a CO band which impacts the W2 photometry (top right). In the top left-hand panel we also show a zoomed-in spectrum. Both
stars are synthesized with Teer = 4875 K, log g = 2.32 dex, and Z = 0.004. The RGB star has [C/N] = 0 while the RC star has [C/N] = —0.79. The increase



METHOD
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Figure 2. Comparing the stellar parameters (7t and log g), we derive from the photometry compared to the spectroscopically derived values from LAMOST
using the validation set which was not used to train the network. The top panels show directly how the inferred values compare to the spectroscopic values for
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3. Inferring Asteroseismic Parameters
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Figure 3. The asteroseismic parameters (AP and Av) we derive for giant stars compared to the spectroscopically derived values from LAMOST spectra (Ting
et al. 2018a). The red points in the top panels compare our derived photometric values with asteroseismc parameters from Vrard et al. (2016). The AP is the
most effective parameter for selecting RC stars, since they have AP values more than 100s larger than RGB AP values. From the bottom left-hand panel, we
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4. Deriving Distances

Extinction Correction:

e Establish a linear relationship between photometric Teff and G — W1 color for low-

extinction stars.
e Use Ag /Aw1 = 16 (Hawkins et al. 2017) to calculate and correct for extinction 1in the W1

band.
Intrinsic Absolute Magnitude:
e Calibrate Mw for RC stars to the fixed value of —1.68 £ 0.02 mag (Hawkins et al. 2017;

Ruiz-Dern et al. 2018).
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Figure 4. The true positive percentage (upper panels) and the contamination rate (lower panels) as a function of the photometrically derived Tefr and log g
for both of our recommended samples. These are evaluated using the spectroscopic sample for which we know the ‘ground truth’. The black text shows the
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Galactic distribution of red clump sample 7.5 12

TN

L LAMOST

W1 (mag)

=
AN

Distance Precision:

RC stars provide more precise distances than Gaia DR2

beyond 3 kpc, with uncertainties scaling linearly, unlike

Gaia's quadratic scaling.

Sample Size and Reach:

The photometric sample 1s larger and extends farther into

the Galactic halo and bulge, with over 1.8 million stars

having more precise distances than Gaia DR2.

Scientific Potential:

Reaching up to ~20 kpc, the sample enables detailed studies e
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of the distant Galaxy and its structure, surpassing Gaia's 109(0y. Gaia/Od )

reliability at large distances.
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Figure 7. Cumulative distribution of distances for our sample of 2.6 million
RC stars. We show the corresponding RC W1 magnitude on the top x-axis
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Galactic distribution of red clump
sample

Correlation with Input Uncertainties:
The network captures rising input noise
(e.g., G=W2 for Tett, parallax for log g)
and reflects 1t in the inferred uncertainties.
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Figure 9. The uncertainties of inferred parameters T and log g as a function of the uncertainties in the input data. Specifically, we compare them to
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Figure 10. The empirical derivatives of T, log g, and AP with respect to the H band as a function of T.¢ and log g. In the background, we show the counts
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Stellar evolutionary models from Lagarde et al. (2012)

Solid red lines: Represent stars with constant mass.

Dashed red lines: Represent stars with constant metallicity.

1. Low metallicity stars show stronger changes in [C/N],
especially at the low-mass end.
2. At high masses, metallicity has minimal effect on [C/N].

These trends are caused by differences in the depth of the
convective zone:
* Lower metallicity and lower mass stars have deeper
convective zones, leading to more extensive mixing.
e Greater mixing increases the transport of processed material
(e.g., nitrogen) to the surface.
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Figure 12. In the upper panel, we show how the expected difference in
[C/N] changes as a function of 7. and log g. The models used are from




Summary

A photometric catalogue of 2.6 million red clump (RC) stars was created using machine
learning and stellar models.

RC stars were 1dentified through [C/N] variations caused by mixing during the red giant
branch phase.

Catalogue combines data from 2MASS, AIIWISE, Gaia, and Pan-STARRS with precise
distances (~9% uncertainty).

Two samples:
e Tier 1: ~405,000 stars with 20% contamination.
e Tier 2: ~2.6 million stars with 33% contamination.

Extends to >10 kpc, enabling studies of the Milky Way's structure and evolution.



