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Introduction

* Legacy Survey of Space and Time (LSST) at the Vera C. Rubin
Observatory will be a wide-field ground-based system. The
telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6
deg? field of view, and a 3.2 Gigapixel camera.

* The survey area will be imaged multiple times in six bands, ugrizy,
covering the wavelength range 320--1050 nm. The typical 5o
point-source depth in a single visit in r will be ~24.5 (AB). The
project is in the construction phase and will begin regular survey
operations by 2022.

* The standard observing sequence will consist of pairs of 15-second
exposures in a given field, with two such visits in each pointing in
a given night. With these repeats the LSST system is capable of
imaging about 10,000 square degrees of sky in a single filter in
three nights.




Introduction

» LSST is expected to detect a few million transients per night, which will generate a live alert
stream during the entire 10 years of the survey.

* For time-domain astronomy, the ability to quickly process the data and obtain meaningful
results has become critical due to current and upcoming projects such as the Zwicky Transient
Facility (ZTF, Bellm et al. 2019) and the LSST, respectively.

* These projects employ a difference imaging analysis pipeline which stream to community
brokers, in the form of alerts, every detection above a given signal to noise threshold.Brokers
are subsequently tasked with filtering and analysing the data in detail, selecting the most
promising objects for different science cases and redirecting them to different research

communities.
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* Fink (Moller et al. 2021) 1s one of the official LSST brokers, selected to receive the raw alert
stream from the beginning of LSST operations,expected for 2025. In the meantime, brokers
systems are operating, and being tested, with alerts from ZTF.

* Based on established technologies for fast and efficient analysis of big data, Fink provides
traditional broker features such as catalogue and survey cross-matches, but also uses machine
learning techniques to generate classification scores for a variety of time-domain phenomena.
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Deployment platformm and prototyping

* Processing (APACHE SPARK cluster)

A cluster of 11 machines (162 cores total for the computation, 2 GB RAM/core) with

APACHE SPARK deployed and managed by APACHE MESOS , the associated data
store 1s a HDFS cluster of 11 machines with 35 TB of storage total

* Communication (APACHE KAFKA cluster)

The substream data are sent to users via a cluster of five machines (20 cores total, 2 GB
RAM/core) where APACHE KAFKA and ZOOKEEPER are deployed.

* Science portal (APACHE HBASE cluster)
 Data store (HDFS cluster)
* GRAFANA and GANGLIA.




Fink performance on ZTF

* The experience accumulated in the last
few years in Fink with ZTF has been
paramount for the design, development [l zTF19acnjwgm
and fine tune of the broker services
according to the needs of difference
scientific communities.

Science Template Difference ObjectID: ZTF19acnjwgm

Fink class: SN candidate

* Nevertheless, given the volume and
complexity of the expected data,

restructuring algorithms to transition g7 P T
from ZTF to LSST is a non-trivial P g )
task.What 1s deployed for ZTF typical P ¥
rates (of the order of 200,000 alerts per = S o e (o e e
night can be casily scaled to O it @ ommamis B

ELASTiCC rates (of the order of | ke b e Rl

1,000,000 alerts in a few hours every
night) by adding more machines.



Currently implemented science modules

* Cross-matching modules:

* (1) Catalogues: Simbad catalogue with a matching radius of 1 arcsec, using the
XMATCH service provided by CDS.

* (11) Surveys: LIGO/Virgo, Fermi, and Swift alerts via the COMET broker
(live), and survey public catalogues (post-processing).

* (111) Other services: Transient Name Server (TNS) for recent classifications.

e Classification modules:

* (1) Microlensing: Classification of events using LIA based on Godines et al.
(2019).

* (1) Supernovae partial and complete light-curve classification: recurrent neural
network architecture on SUPERNNOVA .

* (111) We determine potential Solar system object based on a series of filters.



Classifier and anomaly detection modules

* Algorithms that are able to characterize objects with only a handful of
light-curve observations for obtaining rapid and reliable
characterization of transient events while they are still active

* Active learning algorithms for improving the training set (such as
Bayesian neural networks (BNNs))

* Adaptive machine learning for providing anomaly scores whose
accuracy improve with the evolution of the survey. FINK 1s designed
to have a specific AD module, based on contemporary adaptive
machine learning techniques that will be specifically designed to
optimize the use of domain knowledge.



The ELASTICC dataset

* The “Extended LSST Astronomical Time-series Classification
Challenge” (ELAsT1CC; Knop & ELAsST1CC Team 2023) was
designed to test brokers systems and classification algorithms when
applied to a state of the art dataset which mostly resembles LSST
alerts.

* Its first objective was to test the brokers infrastructure capability of
ingesting and processing a real-time alert stream. The second goal was
to enable the evaluation of ML classification algorithms



Test Instance 1:ELASTICCv1

* Simulated dataset : alert stream of 3 years of LSST (2023.11.27 -2026.11.27), the dataset was simulated
using SuperNova ANAlysis package and contained 19 classes divided into 5 broad (SN-like, Periodic, Non-
periodic, Long and Fast). Light-curves, comprising detections and forced photometry in the LSST broad-band
filters {u, g, 1, 1, z, Y} were provided

* Trainning set: The first year of ELASTiCCvl1 as training sample for all our algorithms (17 233 868 alerts
labelled from 2023.11.27 to 2024.11.27 and corresponding to 1 676 431 distinct objects). Test set: The
remaining two years of ELASTiICCv1 (34 872 745 alerts corresponding to 2 865 642distinct objects).
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Fig. 2: ELASTiCC broad class distribution for our training ° &
(dark blue) and test (orange) sets.

Fig. 1: ELAsTiICC class distribution for our training (dark blue) and test (orange) sets.



Test Instance 1:ELAsTiCQv1

 Each alert package included :light curve data (mjd,fluxcal, - I )
fluxcal _err, filter) , metadata includes position, milky way 5 g10]
extinction and estimated photometric redshift s S00)
* Photometric redshift available: Trainning set: 81% , Test set is . o 041
91%,the distributions: displaying a double peaked structure o -
OB dikpWepexincon % Mestressnie 0

The distribution of number of detection points per alert with
and without forced photometry.The detections 1s strongly | Someans g
peaked around 10 detections, dropping heavily after that.
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of detections on each band, thus it is paramount to access the
robustness of classifiers in this scenario.
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Classifiers in Fink:Metric

* In a classification task, several metrics can be used to assess the performance of the classifier,
such as the Receiver Operating Characteristic (ROC) and Precision-Recall curves, and the
Confusion Matrix. These are built from the Precision (P), Recall (R, also called the True
Positive Rate, TPR) and False Positive Rate (FPR), which in a binary classification are
defined as:

p_ TP |
TP+ FP
TP

T TP+ FN

FP
FPR =
E FP+TN’

With TP(N) the number of true positives (negatives) and FP(N) the number of false
positives (negatives). Precision can be understood as the purity of the predictions, while
Recall 1s 1ts completeness or efficiency, and the FPR 1s the ratio of wrongly classified
objects of the negative class (also known as the false alarm rate).



Classifiers in Fink

* The CBPF Alert Transient Search (CATS)

Input metadata Input Light curves

| | ROC PR

Precision Recall
Bidirectionall LSTM ‘ | Conlv1 D \ﬁ : 2% Lt
T Dropout ; Batoh Normaliszation SN-like  0.99 0.99 0.97 0.99
e (0.0002)  (0.0003)  (0.002)  (0.001)
| Fast 0.99 0.82 0.89 0.71
Max Global Pool } (00009) (0017) (0012) (003)
' Long 0.96 0.65 0.79 0.47
—— ﬁ o (0.0025)  (0.014) (0.031) (0.03)
Periodic 1.00 1.00 1.00 1.00
_— ﬁ (0.00001) (0.00003) (0.0002) (0.0001)
Rt [P Non- 1.00 1.00 0.97 0.96

Dropout

l Periodic  (0.00003) (0.0005)  (0.003)  (0.005)

Softmax




Classifiers in Fink

* SuperNNova (SNN)

SuperNNova (SNN; Moller & de Boissicre 2019) 1s
a deep learning light-curve classification framework
based on Recurrent Neural Networks. SuperNNova
makes use of fluxes over different band-passes and
their measurement uncertainties over time for
classification of time-domain candidates in different
classes. Additional information such as host-galaxy
redshifts and Milky Way extinction and their errors
can be included to improve performance.

* Binary and broad class models.

ROC ..
Class Accuracy AUC Precision Recall
SN-like 97.18 0.9937 95.68 97.70
Fast 99.04 0.9976 99.52  98.57
Long 83.79 0.9198 89.04  77.64
Periodic 99.59 0.9999 99.48  99.76
Non-Periodic  99.59 0.9999 99.48  99.76
Broad 87.96 - 77.61  67.53

Table 2: SUPERNNOVA performance for complete light-
curves using an independent test set from the first year
of alerts. All rows except the last one show the metrics for
a binary target vs. other types.

e Superluminous Supernovaee SSLSN) classifer: Superluminous supernovae (SLSN) are SNe whose
S

]i)eak optical luminosity excee
00 days for some events.

* Early Supernova Ia classifer : a random forest-based classifier

—21 mag . Their rise times can vary between ~ 20 days to more than



Classifiers in Fink
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We find better performance for the SN-like classification with the binary classifier (Figure c)
than with the broad one. This suggests, as expected, that the increase of the training set for the
target is extremely important for ouralgorithm.
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We also find an improvement for classes with smaller training sets such as Fast (Figure d) and
Long(Figure €). However, these two classes still are challenging go classify.
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Evolution of Precision and Recall as a function of number of detections (left two panels)
and host galaxy redshift (right two panels). Fast and Periodic alerts have no redshift
available and thus have only the first two panels.
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The evolution of metrics as a function of number of detections and redshift for the SNN binary classifiers.

The same trend as in the broad classifier is found, our Long classifier increases its precision as more
detections are available (Figure €). Non- Periodic classification (Figure 9f) 1s found to be very stable with
respect of number of detections and redshift provided
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Periodic and SN-like classification also show stable performance with respect to number of detections (Figure g).
Thus, we expect a good performance in the classification of early light-curves for these classes. This is an important
feature when scheduling follow-up observations as explored for Rubin SNe Ia in Moller et al. (2024).
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Figure 1 shows how classification results evolve with the number of detections and simulated redshift.
We note that precision already starts higher than 0.6 for 7 observed data points (the minimum
requirement) and peaks around 20 photometric points, while recall remains almost sta-ble even with
more detections. The sample identified as EarlySNIa by the algorithm is highly skewed towards
small light curves, with ~ 75% of them having 10 detections or less.
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Discussion

* For a few years now, broker teams have been successfully working with the
ZTF alert stream and communication protocols as a test bench for what 1s to be
expected for LSST.This experience has been extremely successful and has
alowed the development of an entire broker ecosystem, along with a diverse
and interdisciplinary community.

* ELAsT1CC 1s a kind reminder that, beyond hardware and data format, machine
learning models and broker infrastructure will need to charé%e significantly in
order to fulfil expectations which rise with the arrival of LSST.

* This includes the design of alﬁorithms themselves, protocols for massive data
transfer between geographically disconnected science teams, experiment
design for proper evaluation and optimisation of trained models to allow
processing of millions of alerts per night. The analysis presented here describes
the strategies developed by the Fink team to address these 1ssues.



