

云南大学中国西南天文研究所 South-Western Instate For Astronomy Research, YNU

Supernova Light Curves Prediction Based on Transformer

Transformer pioneer paper: "*Attention is all you need*" (Vaswani et al. 2017)

Reporter: 金奕澄

June 27, 2025

Catalogue

- •1. Introduction of the Transformer model
- •2. Supernova light curves prediction
 - Data sources
 - Method
 - Results

1. Transformer

Structure and Main Modules

- Structure:
 - Transformer Encoder (history analyzer)
 - Transformer Decoder (future predictor)
 - Output Layer
- Main modules:
 - Continuous value linear transformation (or word embedding)
 - Position Embedding
 - Self-attention calculation (obtain contextual/relevant information)
 - Position-wise Feed-Forward Network (Adding Non-linearity)
 - Residual Connection and Normalization

Continuous value linear transformation or Word Embedding

- Numerical models (e.g., SN light curves predictor): Continuous value linear transformation
 - Establish a linear transformation from data points to highdimensional vectors (understandable to Transformer) (e.g., 128-D) $x_1 \rightarrow$
- Linguistic sequence (e.g., Chat-GPT): Word Embedding
 - Establish a dictionary (mapping from tokens (words) to highdimensional vectors

 $x_2 \rightarrow$

Multi-head Self-attention Calculation

- $a_{1i} = \text{Softmax}(\frac{\overrightarrow{q_1} \cdot \overrightarrow{k_i}}{\sqrt{d}})$: Relevance between data point 1 and n
 - $\overrightarrow{z_1} = a_{1i} \overrightarrow{v_i}$ (By incorporating contextual information, the vector of point 1 is

Other Optimizing Modules

- Position-wise feed-forward network (Adding Nonlinearity)
- Residual connection (Preserving original information and preventing exponential explode)
- Layer normalization (Stabilizing training and accelerating convergence)

Output Layer: Linear

- Numerical Transformer (e.g., SN light curves predictor) :
 - Linear transformation from high-dimensional vectors to data points that human can understand.
- Linguistic Transformer (e.g., Chat-GPT)

$$x_1, x_2 \rightarrow \longrightarrow \widehat{x_3}$$

• Linear transformation from high-dimensional vectors to word scores vector (number of dimensions is the number of words in the dictionary)

Output Layer: Softmax (only for linguistic models)

• Softmax(
$$x_i$$
) = $\frac{e^{x_i - \max(x)}}{\sum_{j=0}^{N-1} e^{x_j - \max(x)}}$
我想吃→ \checkmark → $\begin{bmatrix} -569, \mathcal{R} \\ 20, 键盘 \\ -233, \mathscr{R} \\ 1000, 烤串 \\ -63, \mathscr{C} \end{bmatrix}$ $\xrightarrow{Softmax}$ $\begin{bmatrix} 3.090 \times 10^{-682}, \mathcal{R} \\ 2.505 \times 10^{-426}, 键a \\ 3.012 \times 10^{-536}, \mathscr{R} \\ 0.999 \dots, \mathscr{K} = \\ 2.195 \times 10^{-462}, \mathscr{C} \end{bmatrix}$

From scores to the probability distribution of the next word

Data flow

Figure 1: The Transformer - model architecture.

Supernova light curves prediction

Data source

- ZTF Bright Transient Survey (https://doi.org/10.3847/1538-4357/abbd98) (https://lasair-ztf.lsst.ac.uk/) (Good)
- Light Curves of Pan-STARRS1 SN-like Transients (https://doi.org/10.5281/zenodo.3974949) (Not good)
- Young Supernova Experiment Data Release 1 (https://doi.org/10.3847/1538-4365/acbfba) (Aleo et al. 2023)
- Future: Mephisto (https://doi.org/10.1117/12.2562334)

Method

- MJD-MJD_{Peak}, Filter (g or r), Mag, Magerr,
- Our model makes predictions independently for each band. For any given supernova, the data from each band is treated as a separate sequence.
- Prediction is performed using a sliding window of 11 data points, where the model learns to predict the subsequent 3 points based on the preceding 8.
- We hold out 20% of the supernovae as a validation set. On the remaining 80% for training, we measure the model's error by masking the final 50% of the data points in two separate configurations.

Future work

- Adding multi-band information to the model
- Changing slide-window to full sequence prediction
- Expanding the data set
- Adjusting parameters for higher accuracy

Thank you