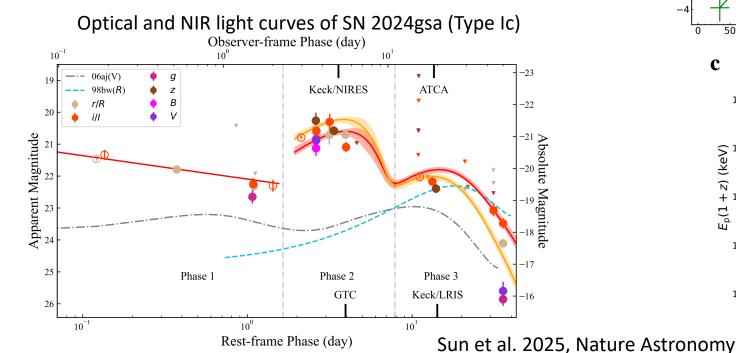
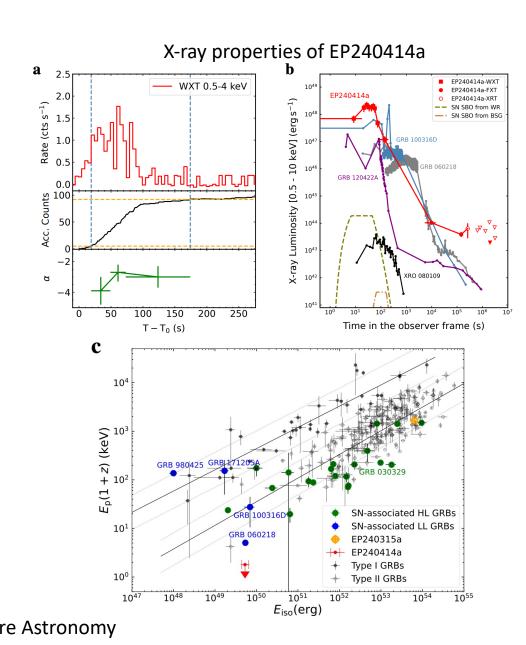


EP 250207b is not a collapsar fast X-ray transient. Is it due to a compact object merger?

Jonker et al., arXiv:2508.13039v1

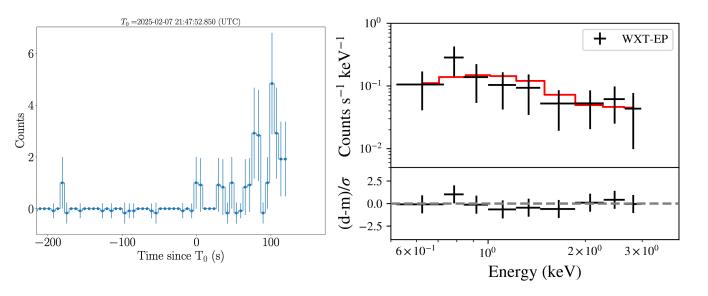

Reporter: Yehao Cheng


Supervisor: Yuanpei Yang

2025.09.26 @SWIFAR, YNU

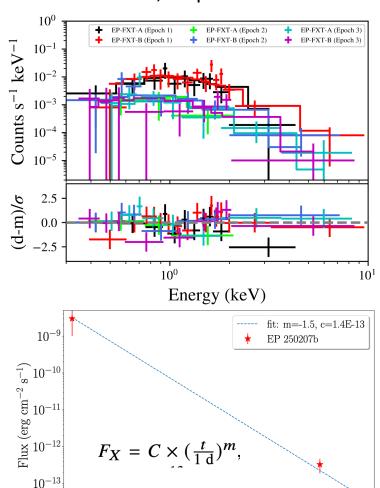
Fast X-ray transients (FXTs)

- FXTs are short-lived extra-galactic X-ray sources
 - Duration : seconds to hours;
 - > 30 FXTs have been detected from Chandra and XMM-Newton archival data;
 - Some of them are related to collapsars



EP250207b

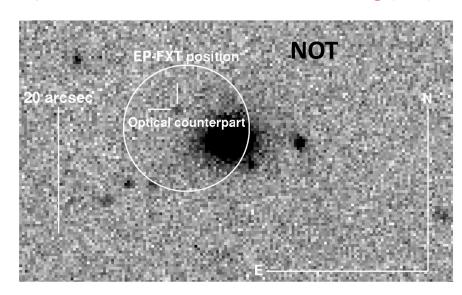
EP-WXT observation


- Discovered on Feb. 7, 2025, t0=21:47:52.85 (UTC)
- Duration : more than 120 s (lower limit)

- EP-WXT 0.5-4 keV spectrum can be fitted well by an absorbed power law with N_H =4x20 cm^-2 and a photon index of 0.5±0.7.
- The average unabsorbed 0.5-4 keV flux is $(6.5 \pm 3.6) \times 10^{-10}$ erg cm^-2 s^-1(90% confidence level).

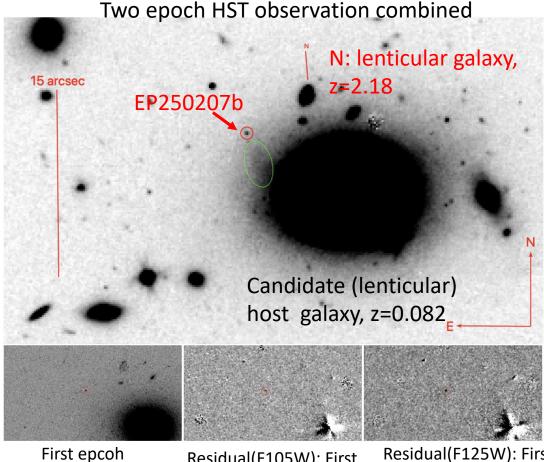
EP-FXT follow up observation

- 1. t0 + 0.71 d, expotime = 3025 s
- 2. t0 + 1.85 d, expotime = 5044 s
- 3. t0 + 2.65 d, expotime = 9045 s


Time since T_0 (d)

 10^{0}

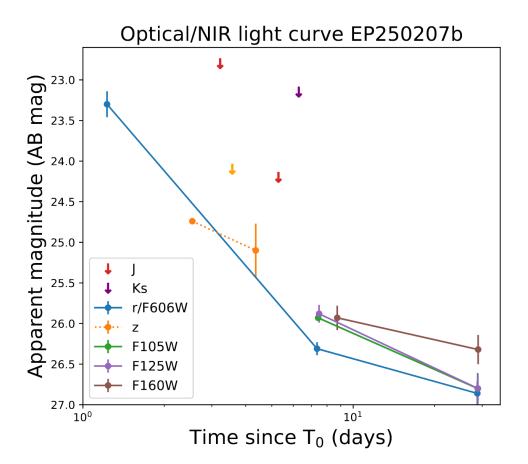
 10^{-14}


Optical and NIR observation

- NOT/ALFOSC + NOT/NOTCam
 - 1 t0 + 1.23 d, 4x200s, $r'=23.3 \pm 0.16$ mag
 - (2) t0 + 3.22 d, 30x60s, $J_{AB} > 22.8 mag$ (3 σ).

- Gemini North and South Multi-Object Spectrograph observations (GMOS)
 - (1) t0 + 2.54 d, 6x60s, GN, $z' = 24.7 \pm 0.2 mag$
 - 2 t0 + 3.57 d, 5x60s, GN, z' > 24.1 mag
 - 3 t0 + 4.36 d, 12x60s,GS, g'>24.7 mag
 - (4) t0 + 5.3 d, 27x40s, GS, $J_{AB} > 24.2 mag(3 <math>\sigma$)
 - (5) t0 + 6.3 d, GS, 90x15s, $K_{s,AB} > 23.15 mag$ (3 σ)

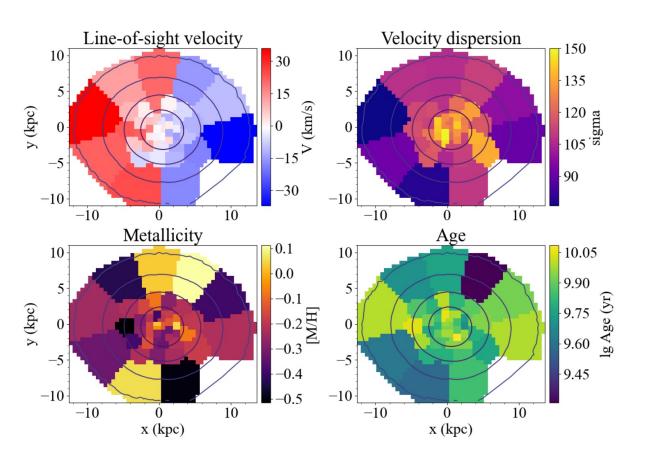
- Hubble Space Telescope observations
 - (1) t0 + (7.4-8.7)d
 - 2 t0 + (28.8-29.0) d



First epcoh Residual(F105W): First epcoh - second epoch

Residual(F125W): First epcoh - second epoch

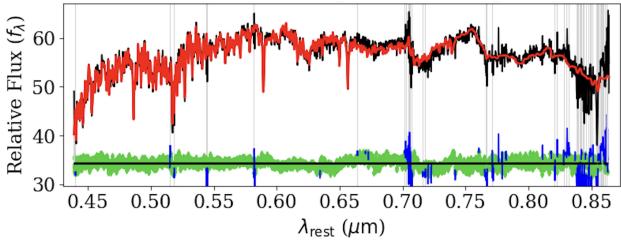
Optical and NIR photometry, light curve


Telescope (1)	Instrument (2)	Date (UTC) (3)	Days since trigger (4)	Exposure time (s) (5)	Filter (6)	AB magnitude (7)
NOT	ALFOSC	2025-02-09 03:16:13	1.228	4×200	r'	23.3±0.16
NOT	NOTCam	2025-02-11 03:07:13	3.22	30×60	J	> 22.8
GN	GMOS	2025-02-10 10:45:59	2.54	6×60	z'	24.7 ± 0.2
GN	GMOS	2025-02-11 11:25:46	3.57	5×60	g'	>24.7
GN	GMOS	2025-02-11 11:27:33	3.57	5×60	z'	>24.1
GS	GMOS	2025-02-12 06:23:32	4.36	12×60	z'	25.1 ± 0.3
GS	F2	2025-02-13 04:46:44	5.29	27×40	J	>24.2
GS	F2	2025-02-14 04:39:23	6.29	90×15	$K_{\mathcal{S}}$	>23.15
HST	WFC3	2025-02-15 06:15:17	7.35	4×505	F606W	26.31 ± 0.08
HST	WFC3	2025-02-15 07:50:29	7.42	4×553	F105W	25.93 ± 0.02
HST	WFC3	2025-02-15 09:24:56	7.48	4×553	F125W	25.88 ± 0.11
HST	WFC3	2025-02-16 15:19:42	8.73	4×553	F160W	25.93 ± 0.15
HST	WFC3	2025-03-08 17:06:56	28.8	2×505	F606W	26.86±0.15
HST	WFC3	2025-03-08 18:41:49	28.87	4×553	F105W	26.8 ± 0.2
HST	WFC3	2025-03-08 20:16:15	28.94	4×553	F125W	26.8 ± 0.2
HST	WFC3	2025-03-08 21:50:40	29	4×553	F160W	26.32 ± 0.18

Very Large Telescope observation on host galaxy

Obs date: 2025-03-03

We note that the spatial variation detected in V, is typical for that observed in a lenticular galaxy.

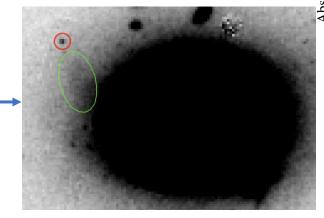

Candidate host galaxy:

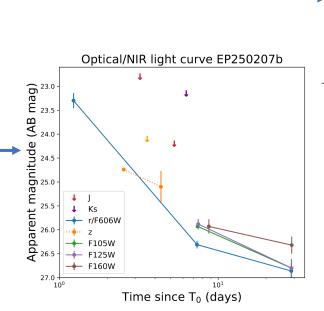
WISEA J111002.65-075211.9 (z=0.082)

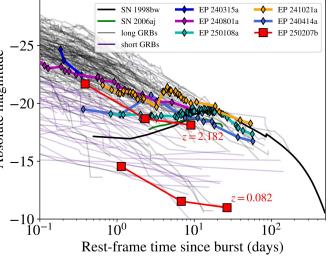
 $P_{chance} < 0.5\%$

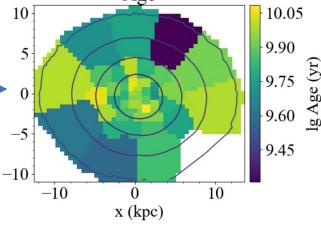
offset: 15.9 kpc (in projection)

Average spectrum and fitting results

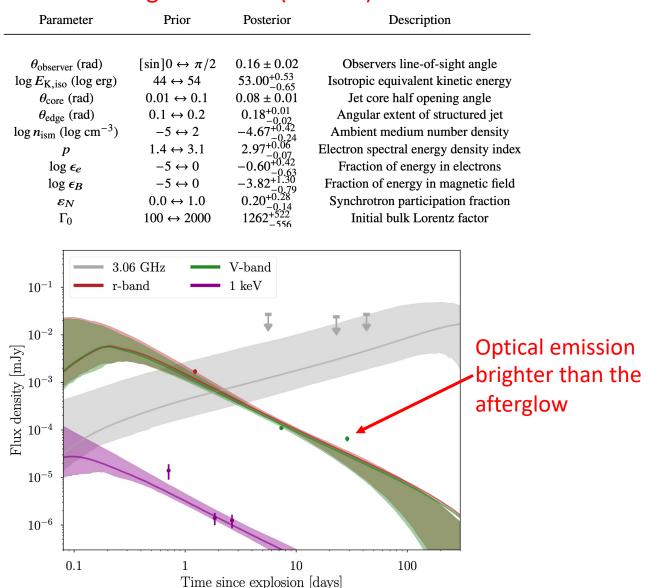

Discussion

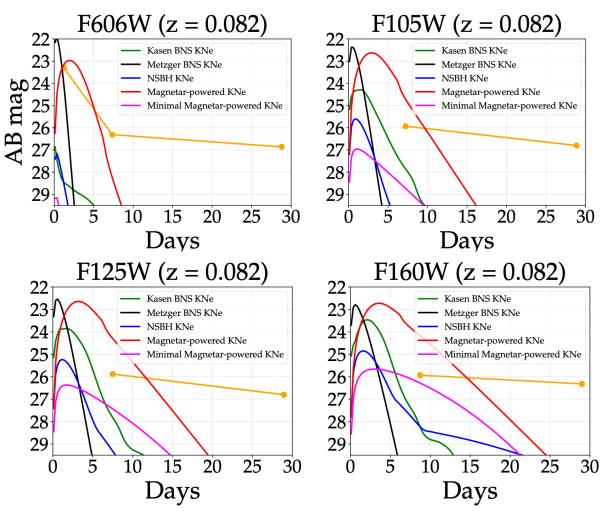

• The observed brightest M_r'=14.5 mag is consistent with the peak absolute magnitude and light curve evolution of some fainter, merger-driven short GRBs.


 Offset =15.9 kpc is well within the range of typical host galaxy offsets observed for short GRBs and simulated ___ merger origin GRB population studies.


 The high age of the stars in the lenticular galaxy is inconsistent with a collapsar origin, but is consistent with a merger-driven (short) GRB scenario.

- The rate of decay observed in the r' and F606W-band seems to decelerate. This could be consistent with persistent contributions from a globular cluster or the core of a (tidally disrupted) dwarf galaxy host for EP 250207b.
- The absolute magnitudes on rest frame timescales of ≈ 5 to
 25 d rule out the presence of a Type Ic SN.





Model fitting and comparison

Afterglow model (off-axis)

Kilonova model

Summary

- FXTs are short-lived extra-galactic X-ray sources
 - Duration : seconds to hours;
 - Some of them are related to collapsars.
- EP250207b: EP-discovered fast X-ray transient
 - Duration : more than 155 s (lower limit);
 - X-ray spectrum can be fitted well by an absorbed power law;
 - Optical and NIR light curve shows decelerate decaying;
 - High age of the stars in candidate host galaxy;
 - Brighter emission in the comparison with afterglow and kilonova models.
- An even brighter globular cluster could be responsible for nearly all the optical/NIR light in this final epoch.
- A tidal stream from a tidally disrupted dwarf galaxy could also explain the enhanced emission linking WISEA J111002.65–075211.9 and the location of the transient.
- EP 250207b is not a collapsar fast X-ray transient. It is likely due to a compact object merger.

Thanks.