Refractive lensing of scintillating FRBs by sub-parsec cloudlets in the multi-phase CGM

Dylan L. Jow,^{2,3,6} × Xiaohan Wu,² and Ue-Li Pen^{1,2,3,4,5,6} ¹Institute of Astronomy and Astrophysics, Academia Sinica, Astronomy-Mathematics Building, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan ²Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 St. George Street, Toronto, ON M5S 3H8, Canada ³Department of Physics, University of Toronto, 60 St. George Street, Toronto, ON M5S 1A7, Canada ⁴Perimeter Institute for Theoretical Physics, 31 Caroline St. North, Waterloo, ON, Canada N2L 2Y5 ⁵Canadian Institute for Advanced Research, CIFAR program in Gravitation and Cosmology ⁶Dunlap Institute for Astronomy & Astrophysics, University of Toronto, AB 120-50 St. George Street, Toronto, ON M5S 3H4, Canada

Presented by Xun Shi (SWIFAR Room 1212) Nov 2023

1. high density -> **small** volume filling fraction f_V

2. very large area covering fraction f_A

- 1. high density -> **small** volume filling fraction f_V
- 2. very large area covering fraction f_A

A geometry problem: how to reconcile small f_V and large f_A ?

- 1. high density -> **small** volume filling fraction f_V
- 2. very large area covering fraction f_A

A geometry problem: how to reconcile small f_V and large f_A ?

McCourt et al. 2017

(Picture from Vedantham & Phinney 2018)

- 1. high density -> **small** volume filling fraction f_V
- 2. very large area covering fraction f_A

A geometry problem: how to reconcile small f_V and large f_A ?

McCourt et al. 2017 (Picture from Vedantham & Phinney 2018)

- 1. high density -> small volume filling fraction f_V
- 2. very large area covering fraction f_A

A geometry problem: how to reconcile small f_V and large f_A ?

geometry of AGN broad line region

 $\frac{f_A}{f_V} \sim \frac{D}{\ell}$

McCourt et al. 2017

(Picture from Vedantham & Phinney 2018)

- 1. high density -> small volume filling fraction $f_V \lesssim 10^{-3}$
- 2. very large area covering fraction f_A

A geometry problem: how to reconcile small f_V and large f_A ?

(Picture from Vedantham & Phinney 2018)

 $n_e = 4 \times 10^{-3} \text{ cm}^{-3}$

7.3 pc

- 1. Large dispersion measure (DM $> \sim 10^3$)
- 2. Many with large scatter (~ ms at ~GHz)

3. Many scintillate (modulation of flux in frequency due to interference of multiple images)

- 1. Large dispersion measure (DM $> \sim 10^3$)
- 2. Many with large scatter (~ ms at ~GHz)
- 3. Many scintillate (modulation of flux in frequency due to interference of multiple images)

interference between images -> flux modulation

Large dispersion measure (DM $> \sim 10^3$)

2. Many with large scatter (~ ms at ~GHz)

3. Many scintillate (modulation of flux in frequency due to interference of multiple images) from Milky Way ISM (like pulsars)

(a) Scintillation

interference between images -> flux modulation

Time (ms) Ocker et al. 2022

W(f) \sim

df ~ $1/\tau_{\rm max}$

Intrinsic scintillation

Observed scintillation

- 1. high density -> small volume fraction filling fraction f_V
- 2. very large area covering fraction f_A

McCourt et al. 2017 (Fioture from Vedanthem & Phirney 2018)

A geometry problem: how to reconcile small f_V and large f_A ?

Facts about FRB

- 1. Large dispersion measure (DM >~ 103)
- 2. Many with large scatter (~ ms at ~GHz)

3. Many scintillate (modulation of flux in frequency due to interference of multiple images) from Milky Way ISM (like pulsars)

-> flux modulation

df ~ $1/\Delta \tau_{\rm max}$

CGM lens -> increase maximum time delay among images $\Delta \tau_{\text{max}}$ -> reduce intrinsic decorrelation frequency df -> suppress scintillation when df < frequency resolution

Bottom line: Fog-like CGM -> suppress observable scintillation

Strong FRB scintillation observed + FRB sight line typically lies within Rvir of some galaxy -> CGM likely not fog-like

llation lies

Bottom line: Fog-like CGM -> suppress observable scintillation

Strong FRB scintillation observed + FRB sight line typically lies within Rvir of some galaxy -> CGM likely not fog-like

Way out: sheet-like CGM -> fewer deflected flux at the CGM lens -> less suppression

llation lies

Why I recommend this paper:

- lensing
- suppress observed frequency modulation of FRB
- like
- suppression at different frequencies; other observations of CGM...

1. Links different research areas: CGM, FRB, radio wave scintillation, 2-screen

2. Good logical inferences: CGM lens screen (if fog-like) + ISM lens screen ->

3. Meaningful implications: CGM is likely not fog-like, can be possibly sheet-

4. Testable predictions (falsifiable): more FRB scintillation observations; relative

Backup slides

Physical picture of the creation of ~ 0.1 pc cloudlets in the CGM time t = 0- t cool T~ 10° T-10°K T-104k 5 n~ 10-3 cm-3 n ~ 10-3 cm (isohavic) (isochoric) T-104, n~0.1 cm-3 tv ~ 10-2 In Estimol (isobaric

McCourt et al. 2017

Suppression of scintillation by the 2nd screen

resolve: $x_1 x_2 > D_{12} \lambda$

A condition for suppression: screen1 and screen2 'resolve' each other

Suppression of scintillation by the 2nd screen

Other examples of such suppression

- in the argument that FRB scattering is dominated by the host galaxy ullet
- \bullet

From pulsar scintillation we know x2 ~ AU. Take D12 ~ Gpc, lambda ~ m. To resolve, we need x1 > 10^3 AU ~ 10^{-2} pc For a screen1 within the Galaxy (in the case of Crab pulsar), take D12 ~ kpc, lambda ~ m. To resolve, we need $x1 > 10^{-3}$ AU ~ 10^{5} km

A condition for suppression: screen1 and screen2 'resolve' each other

Low scintillation modulation of the Crab pulsar (suppression by lensing by the Crab Nebula)

- Large dispersion measure (DM >~ 10³)
 w. large IGM contribution
- Many with large scatter (~ ms at ~GHz) from host galaxy

3. Many scintillate (modulation of flux in frequency due to interference of multiple images) from Milky Way ISM

Why observed DM, scatter and frequency modulation are associated with different medium?

Why observed DM, scatter and frequency modulation are associated with different medium? Esp. why scatter is attributed to the host galaxy? – Again related to a geometry problem!

Scatter ~ time difference $\Delta \tau$ of the two paths

$$\frac{x^2}{2cDs(1-s)} = \frac{s(1-s)D\alpha^2}{2c}$$

Lensing strength is characterized by the largest deflection angle α .

Largest $\Delta \tau$ when s = 0.5;

When s~0 (host galaxy) or s~1 (Milky Way), very small $\Delta \tau$

At a fixed $\Delta \tau$:

Largest x when s=0.5 -> easy to 'resolve'

Take D ~ Gpc, $\Delta \tau$ ~ ms, we have x ~ 0.1 pc $\sqrt{s(1 - s)}$ -> can resolve x2 when $0.1 < s < 0.9 \rightarrow only$ when $s \sim 0$ or $s \sim 1$, suppression of scintillation does not happen. We know Galactic $\Delta \tau$ is insufficient (rule out s~1) -> attribute $\Delta \tau$ to host galaxy.

