#### Half a Million Binary Stars Identified from the Low-resolution Spectra of LAMOST

Yingjie Jing<sup>1</sup><sup>(i)</sup>, Tian-Xiang Mao<sup>1</sup>, Jie Wang<sup>1,2,3</sup>, Chao Liu<sup>4,3,2</sup><sup>(i)</sup>, and Xiaodian Chen<sup>5,3,2</sup><sup>(i)</sup>

1

Reporter: Xu Zhang 2025.6.20

## Outline

## 1. Introduction

## 2. Data and Methods

## 3. Results

## 4. Conclusions and Discussions

## **1. Introduction**

## **Binary Stars: Ubiquitous and Fundamental**

- Binary and multiple star systems comprise roughly half of all stars
- Essential for precise measurements of mass, radius, and luminosity (Torres & Andersen 2010; Eker et al. 2018)
- Crucial for testing theories of stellar formation and evolution, galactic archeology, gravitational waves (Duquennoy & Mayor 1991; Raghavan et al. 2010; Moe & Di Stefano 2017)

## **Traditional Detection Methods:**

- Radial velocity variations (Pryor et al. 1988; Cote et al. 1994)
- Brightness variations/light curves (Yan & Mateo 1994; Albrow et al. 2001)
- Color-magnitude diagram analysis (Sollima et al. 2010; Li et al. 2013)

Limitations: Require multiple observations, effective mainly for bright, close binaries

### **1. Introduction**

### Large Spectroscopic Surveys: New Opportunities

- APOGEE (Holtzman et al. 2015), RAVE (Steinmetz et al. 2006), LAMOST (Cui et al. 2012)
- Previous catalogs: hundreds (RAVE) to thousands (APOGEE) of binaries
- LAMOST studies identified hundreds of thousands (Qian et al. 2019; Liu et al. 2024)
- Gaia: over one million binaries (El-Badry et al. 2021)

### New Approach: Convolutional Neural Networks(CNNs)

- CNNs excel at complex pattern recognition (LeCun et al. 1989; Krizhevsky et al. 2012)
- Data-driven approach eliminates manual feature engineering
- Successfully applied to astronomical problems (Ting et al. 2018; Davies et al. 2019)

## 2. Data and Methods2.1. Data Set

## **Training Sample from C. Liu (2019):**

- Solar neighborhood sample based on H-R diagram positions
- Binary sequence located above single main sequence

Selection criteria:

- Single stars:  $-0.25 < \Delta M_G < 0.25$ (black points)
- Intermediate-mass-ratio binaries:  $0.5 < \Delta M_G < -0.25$  (blue points, mass ratio ~0.71-0.93)
- Excluded high-mass-ratio binaries:  $\Delta M_G < -0.5$  (red points)
- **Final Training Sample:** 68,299 single stars and 3,818 binary stars



**Figure 1.** Color-magnitude diagram for stars with -0.05 < [Fe/H] < 0.15 from the training sample. The black, blue, and red points represent identified single main-sequence, intermediate-, and high-mass-ratio binary stars, respectively. The single stars and intermediate-mass-ratio binaries are selected as a training sample. The *G*-band absolute magnitude ( $M_G$ ) is plotted against the dereddened color index ( $G - K_s$ )<sub>0</sub>.

## 2. Data and Methods

2.1. Data Set

## **Initial Stellar Sample Construction:**

• Cross-matching: LAMOST DR10 LRS A, F, G and K stars catalog+ Gaia DR3 + 2MASS (Skrutskie et al. 2006)

- ~7 million spectra initially
- LAMOST low-resolution spectra: 3700-9000 Å,  $R \approx 1800$  (Cui et al. 2012; Luo et al. 2012)

## Selection Criteria (from C. Liu 2019):

- 1.  $3800 < T_{eff} < 6500 \text{ K}$
- 2.  $\log g > 4$
- 3.  $1.5 < (G Ks)_0 < 2.6$
- 4. SNR > 20 in g band
- 5.  $\varpi > 3$  mas (excluded in this work)
- 6.  $M_G > 4$  mag (excluded in this work)
- Final Sample: 1,258,912 spectra from 971,805 stars

## 2. Data and Methods

- **2.2. Spectral Data Preprocessing**
- **Data Preprocessing Steps:**
- 1. Data cleaning: Remove spectra with excessive masked data points
- 2. Interpolation: Onto new wavelength grid
- **3. Normalization:** Divide by smoothed flux  $f_s(\lambda)$  (A. Y. Q. Ho et al. 2017)

## **Smoothed flux definition:**

$$f_s(\lambda) = \frac{\sum_i (f_i w_i(\lambda))}{\sum_i (w_i(\lambda))},$$
  
where w<sub>i</sub>(\lambda) is Gaussian function  $w_i(\lambda) = e^{-\frac{(\lambda - \lambda_i)^2}{\sigma^2}}$ . with  $\sigma = 35$  nm.

- **Data Splitting:** 80% training, 10% validation, 10% test
- **Class Imbalance:** Binary:Single  $\approx$  1:18, solved by oversampling (Buda et al. 2017)

# 2. Data and Methods2.3. Deep Learning Model

## **CNN Architecture:**

- Basic residual learning block (He et al. 2015)
- Two fully connected layers
- 1D convolution for spectral data
- Convolutional layer definition:

$$\boldsymbol{x}_n^l = a \left( \sum_k \boldsymbol{W}_n^l \otimes \boldsymbol{x}_{n-1}^k + \boldsymbol{b}_n^l \right).$$

•Overfitting prevention: Dropout layers (rate 0.5), early stopping (Srivastava et al. 2014)

## **Training Parameters:**

- Cross-entropy loss function
- Learning rate:  $1 \times 10^{-4}$
- •**Output:** Probability  $p_b \in [0,1]$  of being binary

- **3.1. Test Set Performance**
- **ROC Curve Analysis:**
- •Area under ROC curve: 0.949

(significantly better than random 0.5)

- •95.5% of single stars:  $p_b < 0.2$
- •73% of binary stars:  $p_b > 0.8$

## Precision Analysis: $Precision = \frac{N_{TP}}{N_{TP} + N_{FP} \times N_b / N_s / r}$

- •**Precision = 0.79** ( $p_{th} = 0.5$ )
- •**Precision = 0.89** ( $p_{th} = 0.8$ )
- •Assuming binary-to-single ratio 1:2



**Figure 3.** Probability density function (PDF) of the predicted probabilities ( $p_b$ ) for binary (blue region) and single (red line) stars in the test set. The black line shows the precision as a function of the adopted probability cutoff threshold, assuming a binary-to-single-star ratio of 1:2.

## **3.1. Test Set Performance**

## Mass Ratio Sensitivity:

Highest binary fraction for mass ratios ~0.71-0.93 (training range)

Decreased sensitivity for:

- High mass ratios (q → 1): excluded from training due to spectral similarity
- Low mass ratios: limited by training data  $\Delta M_G$  cuts

Overall trend influenced by training data selection

Key Finding: Network performs best for

intermediate-mass-ratio binaries as expected from

training design



**Figure 4.** The fraction of binary stars as a function of mass ratio for different  $p_{\text{th}}$  values. The shaded area denotes the regions of intermediate-mass-ratio binaries (corresponding to mass ratios between approximately 0.71 and 0.93), which is included in the training sample.

- **3.2.** Comparison with Other Methods
- **Eclipsing Binaries Validation:**
- Sample: 535 EA + 2724 EW eclipsing
- binaries from Chen et al. (2020)
- Zwicky Transient Facility (ZTF): 350,000 EBs detected
- •Detection rates  $(p_{th} = 0.5)$ :
  - EA binaries: 96.45%
  - EW binaries: 96.40%



**Figure 5.** Probability density function (PDF) of the predicted binary probabilities ( $p_b$ ) for eclipsing-binary stars. The blue solid line corresponds to Algol-type (EA) binaries, while the red solid line corresponds to W Ursa Majoris-type (EW) binaries, demonstrating a high detection rate of 96.45% for EA and 96.40% for EW binaries.

# 3.2. Comparison with Other Methods10Radial Velocity Validation:8•Potential binaries: $\Delta_{rv,max} > 25 \text{ km s}^{-1}$ 8•Likely singles: $\Delta_{rv,max} < 5 \text{ km s}^{-1}$ ( $\geq 4$ 6

observations)

- •Agreement rates ( $p_{th} = 0.5$ ):
  - Binary stars: 92.8%
  - Single stars: 68.8% (lower due to undetected long-period binaries)



**Figure 6.** Probability density function (PDF) of the predicted binary probabilities ( $p_b$ ) for stars observed multiple times in the LAMOST survey. The blue line indicates potential binary stars (with  $\Delta_{rv,max} > 25 \text{ km s}^{-1}$ ), while the red line indicates likely single stars (with  $\Delta_{rv,max} < 5 \text{ km s}^{-1}$ ).

- **3.3. Main-sequence Binary-star Catalog**
- **Catalog Statistics:**
- **468,634 binary stars** (p<sub>b</sub> > 0.5)
- **323,909 stars** with  $p_b > 0.8$  (high confidence)
- Threshold  $p_b > 0.5$ : compromise between accuracy and purity
- **Comparison with Previous Studies:**
- Qian et al. (2019): 256,000 spectroscopic binaries (LAMOST, multiple observations)
- Jack (2019): 34,691 spectroscopic binaries (Gaia DR2)
- Birko et al. (2019): 27,716 single-lined binaries (RAVE + Gaia DR2)
- Price-Whelan et al. (2018): 4,898 SB1 (APOGEE red giants)
- This catalog surpasses previous spectroscopic binary studies in size

- **3.3. Main-sequence Binary-star Catalog**
- **Catalog Characteristics:**
- **Probability Distribution:**
- Most spectra have  $p_b \approx 0$  or  $p_b \approx 1$  (clear

classification)

For multiple observations:  $p_b = maximum$  value

Higher  $p_{th} \rightarrow$  fewer binaries but higher precision



**Figure 7.** The distribution of  $p_b$  provided by the network for all spectra (blue) and individual stars (red) within the main-sequence star sample. The solid curves represent the number distribution of  $p_b$ , while the dashed lines indicate the count of spectra (or individual stars) with as a function of the  $p_{th}$ . For individual stars,  $p_b$  corresponds to the highest value in cases of multiple observations.

- **3.3. Main-sequence Binary-star Catalog**
- **Catalog Characteristics:**
- **Spatial and Distance Distribution:**
- **Distance range:** up to ~19 kpc
- **Median distance:** ~0.7 kpc for binary stars
- 115 binary stars beyond 10 kpc from the Sun



**Figure 9.** Distribution of distances to the Sun for all stars (black) and binary stars (red). The histogram reveals that binary stars are found at a range of distances, with 115 binary stars situated beyond 10 kpc.

- **3.3. Main-sequence Binary-star Catalog**
- **Catalog Characteristics:**
- **Color-Magnitude Diagram Validation:**
- Predicted binaries appear above single-star
- main sequence (as expected)
- Some  $p_b < 0.5$  stars above binary sequence:
- likely high-mass-ratio binaries



**Figure 10.** Number density contour plot in the color–magnitude diagram of stars with -0.05 < [Fe/H] < 0.15. Stars with  $p_b < 0.5$  are shown in black contours, while those with  $p_b > 0.5$  are highlighted in blue.

**3.4. Planets in Binary-star Systems** 

## **Exoplanet Host Discovery:**

- Cross-matched with NASA Exoplanet Archive (accessed 2024 Sep 24)
- 128 binary systems hosting confirmed exoplanets
- 114 previously unidentified as binaries in the archive
- Scientific Significance:
- Demonstrates existence of planets in binary systems (Desidera & Barbieri 2007; Mugrauer & Neuhäuser 2009)
- Important for planet formation studies in dynamically complex environments (Thebault &
- Haghighipour 2015)
- Diverse binary configurations and planetary architectures

## 4. Conclusions and Discussions

**Key Achievements:** 

- 1. Novel CNN approach for binary identification using single-epoch spectra
- **2. High performance:** ROC area 0.949, ~96% detection rate for eclipsing binaries
- 3. Largest spectroscopic binary catalog: 468,634 binary stars
- 4. 128 binary systems with exoplanets discovered

#### Method Advantages:

- Single-epoch spectra vs. traditional multi-epoch radial velocity methods
- Particularly valuable for large spectroscopic surveys like LAMOST
- Less affected by distance compared to photometric methods

#### **Limitations and Future Work:**

#### **Current limitations:**

Training focused on main-sequence stars only

Potential biases in training data selection

Difficulty detecting highest-mass-ratio binaries

#### **Future directions:**

Expand training dataset to include wider range of stellar types Explore alternative training data selection methods Mitigate potential biases in training sample

## Thanks!