

A Light Redback Companion of PSR J1622–0315 and Irradiation Power in Spider Systems

South-Western Institute For Astronomy Research, YNU

国西南天文研究所

云南大学中

Y. X. Jane Yap, Albert K. H. Kong, Kwan-Lok Li

Speaker: Xinlei Chen 2024/10/28 SWIFAR @ YNU

https://iopscience.iop.org/article/10.3847/1538-4357/acea82

OUTLINE

- I. Background
- II. Observations
- III. Light-curve Modeling
- IV. Discussions
- V. Summary

1 Background

Spider binary system

 Compact binaries containing a millisecond pulsar (MSP) with a low-mass companion star, which is ablated away by energetic particles and/or γ -rays produced by the pulsar wind.

1 Background PSR J1622–0315

- R.A. = 16:22:59s .6 and decl. = -03:15:37.3 (J2000)
- A binary MSP discovered by Sanpa-Arsa (2016) using the Green Bank Telescope (GBT) and the Nancay telescope.
- Optical counterpart was identified with the MDM Observatory.
- An orbital period of 3.9 hour and the dispersion measure is 21.4 pc cm⁻³ (~20% uncertainties).
- Its light curve exhibits an ellipsoidal variation.
- From the pulsar timing, the mass function was obtained and a companion mass of >0.1 $\rm M_{\odot}$ was derived, assuming an NS mass of 1.35 $\rm M_{\odot}$ and an edge-on orbit (Sanpa-Arsa 2016).
- From the measurements of the companion radial velocity, the NS mass to be constrained to >1.45 $\rm M_{\odot}$ for an edge-on orbit or, alternatively, constrained the inclination to >64° if the pulsar is less massive than 2.0 $\rm M_{\odot}$ (Strader et al. 2019).

2 Observations

Table 1Observation Details of MSP J1622–0315

Telescope	Date	Filter (SDSS)	Exposure Time (s)	Duration (minutes)
Lulin 1 m	2019 Feb 2	r', g'	180, 300	120
	2019 Feb 3	r', g'	180, 300	120
	2019 Apr 6	r', g'	180, 300	180
	2021 Jul 4 ^a	r', g'	180, 300	36
Lijiang 2.4 m	2019 Mar 10	r', g'	180, 300	80

- Only analyzed the observations that occurred when the weather conditions allowed a seeing better than FWHM < 3".
- Source counts were extracted from circular apertures with 4" radii; background counts from annular regions centered at the positions of the stars, with inner radii of 8" and width of 2".
- Eight spherical, unsaturated point sources that are relatively isolated, as comparison stars and calculate the average instrumental magnitude.
- Another stable bright star as a reference star and differential magnitudes of it varied less than 0.1 mag among the frames.

3 Light-curve Modeling

PHOEBE v2.3 (Conroy et al. 2020)

MCMC sampling

Table 2Uniform Priors Are Applied to the Following Fitting Parameters

Lower Limit	Parameter	Upper Limit
0.04	$q_{ m binary}$	0.12
3500	$T_{\rm eff.2}$ (K)	7000
50	i_{binary} (°)	90
0.7	$A_{\rm V}$ (mag)	0.9
1.664	d (kpc)	7.766

For companion radius, used a Gaussian prior with a mean value of 0.27 $\rm R_{\odot}$

```
The PSR J1622–0315 companion is the hottest RB companion known so far.
```


Fit Parameter(s)	Result(s)			
$q_{ m binary} \; [M_{ m comp}/M_{ m NS}]$	$0.066^{+0.005}_{-0.003}$			
$T_{\rm eff,2}$ (K)	6383^{+89}_{-98}			
<i>i</i> _{binary} (°)	$78.1^{+7.9}_{-6.9}$			
$R_{ m equiv,2} \ (R_{\odot})$	$0.279\substack{+0.004\\-0.004}$			
$A_{\rm V}$ (mag)	$0.81\substack{+0.06\\-0.07}$			
d (kpc)	$2.06\substack{+0.04\\-0.04}$			
Derived Parameter(s)				

$M_{\rm primary} \ (M_{\odot})$	
$M_{ m secondary}~(M_{\odot})$	

4 Discussions

The relationship between the irradiation luminosity (L_{irr}), the X-ray luminosity (L_X), and the spin-down luminosity (\dot{E})

- Irradiation luminosity is about 2 orders of magnitude higher than the X-ray luminosity, the X-ray emission, regardless of its origin, is unlikely to be the main source of irradiation in these systems.
- The heating mechanism involves some form of reprocessing of the spin-down energy (such as intrabinary shocks).

5 Summary

- Based on the new observed light curves of PSR J1622-0315, the physical parameters are derived using PHOEBE through MCMC sampling. And the companion is the hottest RB companion known so far.
- After comparing the relationship between the irradiation luminosity, the X-ray luminosity, and the spindown luminosity, the X-ray emission is unlikely to be the main source of irradiation in these systems, and the heating mechanism involves some form of reprocessing of the spin-down energy.

THANKS

Item	Designation	BW/RB ^a	P (ms)	\dot{P} (×10 ⁻²¹ s s ⁻¹)	Companion Mass (M_{\odot})	$\overset{L_{\rm irr}}{(\times 10^{34} \text{ erg s}^{-1})}$	$\frac{\log_{10}}{(L_{\rm x}/{\rm erg~s}^{-1})}$	$\frac{\log_{10}}{(\dot{E}/\mathrm{erg}~\mathrm{s}^{-1})}$	References
1	PSR J0023+0923	BW (1)	3.05	9.61	$0.018\substack{+0.002\\-0.001}$	$0.296^{+0.016}_{-0.013}$	$29.35_{-0.53}^{+0.47}$	34.13	1, 2
2	PSR J0251+2606	BW (1)	2.54	7.57	$0.032\substack{+0.006\\-0.003}$	$0.252\substack{+0.012\\-0.011}$	•••	34.26	1, 4
3	PSR J0636+5128	BW (1)	2.87	3.35	$0.018\substack{+0.001\\-0.001}$	$0.097\substack{+0.001\\-0.001}$	$27.93^{+1.18}_{-0.82}$	33.75	1, 5
4	PSR J0952-0607	BW (1)	1.41	4.56	$0.029^{+0.001}_{-0.001}$	$2.043_{-0.076}^{+0.077}$	30.47	34.81	1, 7, 8, 9
5	PSR J1124-3653	BW (1)	2.41	1.41	$0.041\substack{+0.001\\-0.003}$	$0.286\substack{+0.008\\-0.010}$	$30.56_{-0.68}^{+0.45}$	33.60	1
6	PSR J1301+0833	BW (1)	1.84		$0.045\substack{+0.001\\-0.002}$	$0.697\substack{+0.046\\-0.058}$		34.82	1, 10
7	PSR J1311-3430	BW (1)	2.56	20.92	$0.016^{+0.001b}_{-0.001}$	$\sim \! 20$	$31.63_{-0.54}^{+0.37}$	34.69	11, 12
8	PSR J1544+4937	BW (1)	2.16	2.93	$0.025\substack{+0.006\\-0.006}$	$0.161\substack{+0.035\\-0.035}$		34.06	15, 16
9	PSR J1555–2908	BW (1)	1.79	44.5	$0.060^{+0.005d}_{-0.003}$	$9.92^{+0.002}_{-0.002}$		35.49	3, 43
10	PSR J1653.6-0158	BW (1)	1.97	2.40	$0.013^{+0.001e}_{-0.001}$	$0.333^{+0.039e}_{-0.034}$	$31.07\substack{+0.04\\-0.04}$	33.64	17, 18, 51
11	PSR J1810+1744	BW (1)	1.66	4.60	$0.071^{+0.027}_{-0.027}$	2.389	$30.68_{-0.52}^{+0.44}$	34.60	19, 2
12	PSR J1959+2048	BW (1)	1.61	10.63	$0.036\substack{+0.001\\-0.001}$	$3.01\substack{+0.036\\-0.036}$	$31.04_{-0.48}^{+0.32}$	35.00	1, 20, 21
13	PSR J2017–1614	BW (1)	2.31	2.45	^c			33.85	22
14	PSR J2051-0827	BW (1)	4.51	12.13	~ 0.04		$28.62\substack{+0.55\\-0.70}$	33.72	23, 24
15	PSR J2052+1219	BW (1)	1.99	6.70	$0.042\substack{+0.001\\-0.001}$	$0.944\substack{+0.024\\-0.024}$		34.53	1, 25
16	PSR J2241–5236	BW (1)	2.19	6.65	$0.016\substack{+0.001\\-0.001}$	$0.282\substack{+0.005\\-0.006}$	$29.88\substack{+0.42\\-0.57}$	34.40	1, 26
17	PSR J2256–1024	BW (1)	2.29	12.10	>0.030	0.277	$30.08\substack{+0.37\\-0.53}$	34.60	2
18	PSR J1023+0038	RB (1)	1.96	11.81	$0.205^{+0.008j}_{-0.008}$,	0.884	$31.90^{+0.31i}_{-0.75}$	34.40	27, 29, 2
19	PSR J1048+2339	RB (1)	4.67	30.37	0.24-0.35	$0.759\substack{+0.210\\-0.175}$	$31.52^{+0.18h}_{-0.18}$	34.08	30, 31, 32
20	PSR J1227-4853	RB (1)	1.69	11.11	$0.17^{+0.01j}_{-0.01}$,	$\sim 1.21^{f}$	$32.12_{-0.47}^{+0.31i}$	34.96	27, 33, 34
21	PSR J1306-40	RB (1)	2.20		$0.59^{+0.01g}_{-0.01}$	${\sim}5.90^{ extrm{g}}$	31.94		35, 36, 47
22	PSR J1431-4715	RB (2)	2.01	14.11	0.13-0.19			34.83	37, 38
23	PSR J1622-0315	RB (2)	3.85	11.6	$0.122\substack{+0.007\\-0.006}$		$30.61^{+0.07h}_{-0.07}$	33.89	39, 40, 41
24	PSR J1628-3205	RB (2)	3.21	15.06	0.17-0.24		$30.96\substack{+0.33\\-0.50}$	34.26	10
25	PSR J1723-2837	RB (2)	1.86	7.56	$0.36\substack{+0.08 \\ -0.06}$		$31.92\substack{+0.31\\-0.48}$	34.67	42, 44, 38
26	PSR J2039-5617	RB (2)	2.65	14.16	0.162-0.18	$0.150\substack{+0.027\\-0.018}$	$31.18^{+0.03h}_{-0.03}$	34.40	38, 28, 13, 49
27	PSR J2129-0429	RB (2)	7.62	335.6	$0.44\substack{+0.04\\-0.04}$	$0.091\substack{+0.018\\-0.018}$	$31.79\substack{+0.34\\-0.51}$	34.48	45, 46
28	PSR J2215+5135	RB (1)	2.61	33.37	$0.345^{+0.008k}_{-0.007}$	0.794	$31.92\substack{+0.41\\-0.61}$	34.87	19, 2
29	PSR J2339-0533	RB (1)	2.88	6.68	$0.30\substack{+0.021\\-0.02}$	$0.316\substack{+0.073\\-0.073}$	$31.44_{-0.49}^{+0.33}$	34.04	48, 50

