

## A systematic search for short-period close white dwarf binary candidates based on the Gaia EDR3 catalog and the Zwicky Transient Facility data

云南大学中国西南天文研究所

South-Western Institute For Astronomy Research, YNU

Liangliang Ren, Chengyuan Li, et al.

Speaker: Xinlei Chen 2025/05/16 SWIFAR @ YNU

# OUTLINE

- I. Background
- II. Target selection from Gaia EDR3
- III. Zwicky Transient facility photometry
- IV. Results
- V. Summary



## Background

## Close White Dwarf Binaries (CWDBs)

At least one of the components in the close binary systems is a white dwarf.

1. Post Common Envelope Binaries (PCEBs)

These systems consist of a white dwarf and a main sequence star, and they are either detached or semi-detached binary systems.

2. Cataclysmic Variables (CVs)

Semi-detached binary systems where the white dwarf is accreting material from its companion star.



3. Double White Dwarfs (DWDs)

### binary evolution 25% (Ren et al. 2020)



## Background

## Close White Dwarf Binaries (CWDBs)

- Significances
- An important branch of the evolution channel of main-sequence star binaries
- Observational evidence for the binary evolution models
- Research of stellar physics, milli-Hertz gravitational-wave astronomy (verification binaries for TianQin and LISA), and Galactic evolution
- A search for CWDBs from a combination of Gaia EDR3 and ZTF DR8.

#### unstable RLOF ---> dynamical mass transfer



#### common-envelope phase





## Target selection from Gaia EDR3

```
SELECT *
FROM gaiaedr3.gaia_source
WHERE dec > -28.0
AND bp_rp < 1.0
AND parallax_over_error > 5
AND phot_bp_mean_flux_over_error > 10
AND phot_rp_mean_flux_over_error > 10
AND 5+5 * log10((parallax + 0.029)/1000) + phot_g_mean_-
 mag > 3.7 * bp_rp + 2.2
AND 5+5 * log10((parallax + 0.029)/1000) + phot_g_mean_-
 mag < 2.7 * bp_rp + 11.5
AND phot_bp_rp_excess_factor < 1.45+0.06 * power
  (phot_bp_mean_mag---phot_rp_mean_mag, 2)
AND phot_bp_rp_excess_factor > 1.0+0.015 * power
  (phot_bp_mean_mag---phot_rp_mean_mag, 2)
AND (astrometric_chi2_al / (astro-
 metric_n_good_obs_al---5) < 1.44</pre>
OR astrometric_chi2_al / (astrometric_n_good_obs_al---
 5) < 1.44 * exp(-0.4 * (phot_g_mean_mag---19.5)));
```



## Target selection from Gaia EDR3

- Gaia Variability Metric
- The G-band photometries to further filter candidate with Gaia variability metric; Mowlavi et al. (2021)



 the Gaia variability metric is actually dependent on the G-band magnitude

### • VARINDEX

- In order to select the most probable variable sources from the initial sample
- Define the VARINDEX; Guidry et al. (2021)

 $\texttt{VARINDEX} = V_G - (Ae^{\alpha G} + Be^{G-17.0} + C)$ 

A =  $8.31 \times 10^{-9}$ ,  $\alpha = 0.794$ , B = 0.0005, and C = 0.00962



## Zwicky Transient facility photometry



 Table 1

 Summary of the Numbers of Close White Dwarf Binary Candidates at Different Stages and Different Types

| Sample                 | Туре                                    | Identified Sources | Unidentified Sources | Number  |
|------------------------|-----------------------------------------|--------------------|----------------------|---------|
| Selection on Gaia data |                                         |                    |                      |         |
| Initial sample         |                                         |                    |                      | 823,231 |
| Variable sample        |                                         |                    |                      | 12,480  |
| Selection on ZTF data  |                                         |                    |                      |         |
| Periodic sample        |                                         |                    |                      | 826     |
| Binary sample          | HW Vir-type (Algol-type) binaries       | 6                  | 52                   | 58      |
|                        | EA-type (Detached Algol-type) binaries  | 14                 | 51                   | 65      |
|                        | EB-type ( $\beta$ Lyrae–type) binaries  | 3                  | 59                   | 56      |
|                        | EW-type (W Ursae Majoris-type) binaries | 1                  | 40                   | 41      |
|                        | ELL-type (Ellipsoidal) binaries         | 20                 | 183                  | 209     |
|                        | Subtotal                                | 44                 | 385                  | 429     |

## Results



## Results

- Characteristic GW strain and SNR of GW signals
- The amplitude of the gravitational wave signal

$$\mathcal{A} = \frac{2(G\mathcal{M})^{5/3}}{c^4 d} (\pi f)^{2/3}$$
$$\mathcal{M} = (m_1 m_2)^{3/5} (m_1 + m_2)^{-1/5}$$

The characteristic strain

$$h_c = \sqrt{N_{\text{cycle}}} \mathcal{A} \quad N_{\text{cycle}} = f_{\text{GW}} T_{\text{obs}}$$

• The SNR ( 
$$\rho$$
 )  

$$\rho^2 = \frac{2\langle A^2 \rangle T_{obs}}{\widetilde{S}_n(f_s)}$$

$$\langle A^2 \rangle = \mathcal{A}^2 \left[ (1 + \cos^2(\iota))^2 \langle F_+^2 \rangle + 4\cos^2(\iota) \langle F_\times^2 \rangle \right]$$

1. 10 candidates fall above the TianQian sensitivity curve, and about 16 candidates fall above the LISA sensitivity curve.

2. A low SNR threshold of 5 as the minimum standard for GW signals; for TianQin, 2 new VBs; for LISA, 6 new VBs.





• They crossmatched the Gaia EDR3 and Zwicky Transient Facility public data release 8.

- They applied period finding algorithms to obtain a sample of periodic variables.
- The phase-folded light curves were inspected, and finally they obtained a binary sample containing 429 CWDB candidates.
- They further classified the samples into eclipsing binaries (including 58 HW Vir-type binaries, 65 EAtype binaries, 56 EB-type binaries, and 41 EW-type binaries) and ellipsoidal variations (209 ELL-type binaries).
- They found two (six) potential GW candidates with S/Ns greater than 5 in the nominal mission time of TianQin (LISA), which increases the total number of candidate VBs for TianQin (LISA) to 18 (31).



# THANKS

