

Tidal structures of six globular clusters from the Wide Field Survey Telescope (WFST) pilot survey

Zhen Wan [®], ^{1,2*} Lulu Fan [®], ^{1,2,3} Xuzhi Li [®], ^{4,5} Xu Kong [®], ^{1,2,3} Tinggui Wang, ^{1,2,3} Qingfeng Zhu, ^{1,2,3} Ji-an Jiang, ^{1,2,6} Minxuan Cai, ^{1,2} Zelin Xu, ^{1,2} Xianzhong Zheng, ⁷ Jingquan Cheng, ⁸ Feng Li, ⁹ Ming Liang, ¹⁰ Hao Liu, ⁹ Wentao Luo, ³ Jinlong Tang, ¹¹ Hairen Wang, ⁸ Jian Wang, ^{3,9} Yongquan Xue, ^{1,2} Dazhi Yao, ⁸ Hongfei Zhang ⁹ and Wen Zhao ^{1,2}

MNRAS 540, 2863-2876 (2025)

Xingzhu Zou (邹星竹)
Yunnan University
2025-11-12

¹Department of Astronomy, University of Science and Technology of China, Hefei 230026, China

²School of Astronomy and Space Science, University of Science and Technology of China, Hefei 230026, China

³Institute of Deep Space Sciences, Deep Space Exploration Laboratory, Hefei 230026, China

Part I Introduction

Part II Data

Part III Data Reduction

Part IV Result and Discussions

Introduction

Globular clusters (GCs)

- Globular clusters (GCs) serve as fossil records of the Milky Way's formation and evolution.
- They are accreted during galaxy mergers, preserving the chemical and dynamical signatures of progenitor systems.
- Strong tidal interactions reshape GCs and produce tidal tails, which trace the Milky Way's gravitational potential and merger history.
- These tidal features often show large-scale asymmetry, requiring deep photometry and wide-field surveys for unbiased studies.
- Combining photometric selection with spectroscopic follow-up enables detailed chemodynamical studies of GC formation and evolution.

Introduction

The Wide Field Survey Telescope (WFST)

- WFST is a new-generation optical survey instrument equipped with a 2.5-m primary mirror and a 9×9k CCD array, providing a 3° field of view.
- Located at the Lenghu Observatory, WFST will survey ~8000 deg² of the Northern sky down to >24 mag depth.
- Key scientific goals include:
 - 1. Detecting supernovae, tidal disruption events, and electromagnetic counterparts of gravitational waves;
 - 2. Studying AGN variability, variable stars, and Solar System objects;
 - 3. Systematically mapping faint Galactic structures, such as the halo, dwarf galaxies, and GC tidal features.
- ➤ The WFST GC project aims to:
 - A. Reach the main-sequence depth of Northern GCs;
 - B. Investigate their morphology and tidal signatures;
 - C. Identify short-period variables;
 - D. Analyze stellar populations using future deep *u*-band data.

Part I Introduction

Part II Data

Part III Data Reduction

Part IV Result and Discussions

Data

• Pilot survey period: March–July 2024

• Bands: g and r

• Total exposures: 214 frames

Cluster	Coordinate	R _⊙ (kpc)	R _{GC} (kpc)	Proper motion (mas yr ⁻¹)	$V_{\rm los}~({\rm kms^{-1}})$
NGC 4147	(182°.5262, 18°.5426)	18.54 ± 0.21	20.74 ± 0.19	$(-1.690 \pm 0.014, -2.092 \pm 0.013)$	179.35 ± 0.31
NGC 5024	(198°2302, 18°1681)	18.50 ± 0.18	19.00 ± 0.16	$(-0.131 \pm 0.005, -1.332 \pm 0.005)$	-63.37 ± 0.25
NGC 5053	(199°.1128, 17°.7002)	17.54 ± 0.23	18.01 ± 0.20	$(-0.338 \pm 0.007, -1.214 \pm 0.007)$	42.82 ± 0.25
NGC 5272	(205°.5484, 28°.3772)	10.18 ± 0.08	$12.09 \pm .06$	$(-0.153 \pm 0.007, -2.679 \pm 0.007)$	-147.20 ± 0.27
NGC 5904	(229:6384, 2:0810)	7.48 ± 0.06	6.27 ± 0.02	$(4.073 \pm 0.006, -9.872 \pm 0.006)$	53.50 ± 0.25
NGC 6341	(259°.2807, 43°.1359)	8.50 ± 0.07	9.85 ± 0.04	$(-4.934 \pm 0.012, -0.630 \pm 0.012)$	-120.55 ± 0.27

Cluster	Filter	Exp. time (s)	Epoch	FWHM (arcsec)
NGC 4147	g/r	60/60	12/15	~2.52/1.36
NGC 5024	g/r	60/60	12/15	$\sim 2.05/1.24$
NGC 5272	g/r	30/30	25/25	~1.59/1.18
NGC 5904	g/r	30/30	25/25	~1.74/1.35
NGC 6341	g/r	30/30	30/30	~1.37/1.70

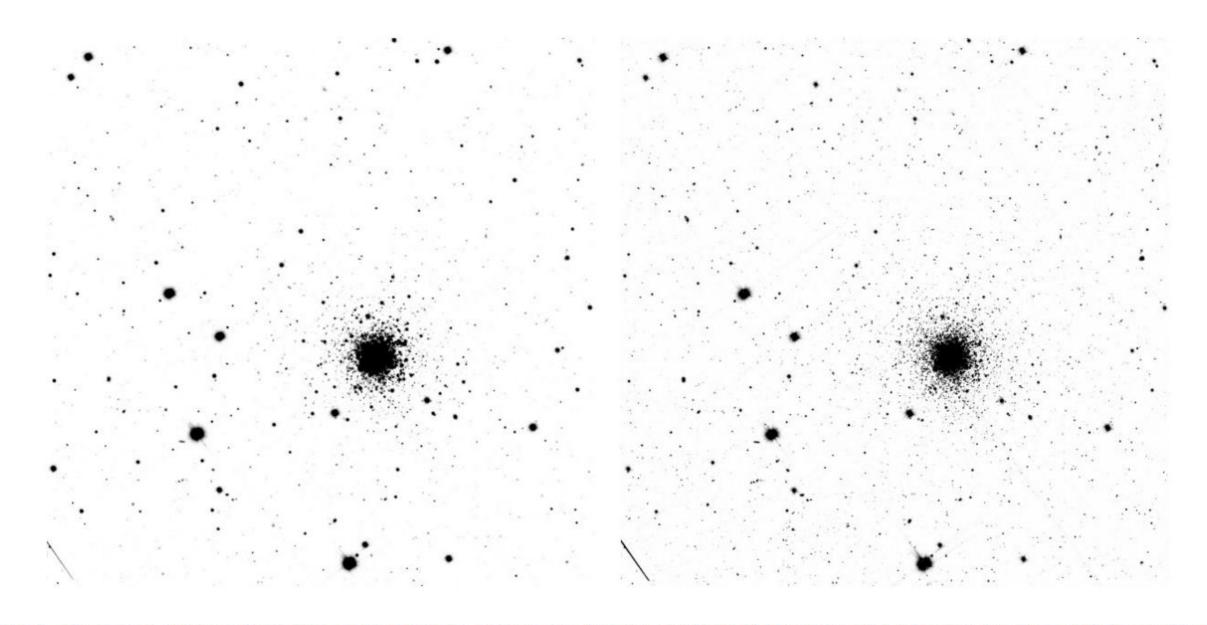


Figure 1. The stacked g (left) and r (right) images of central \sim 100 arcsec \times 100 arcsec of NGC 4147 are presented. The r-band exposure exhibits greater depth, primarily attributable to more favourable weather conditions during observation.

Part I Introduction

Part II Data

Part III Data Reduction

Part IV Result and Discussions

Data Reduction

WFST Data Reduction and Photometry Workflow

- 1. Bias and Flat Calibration(master bias, master flat)
- 2. photometry is performed on the calibrated exposures primarily using the PHOTUTILS
- 3. Estimate background using σ-clipped BACKGROUND2D (200×200 pixel grid), Interpolate and subtract background map to produce clean science images

4. Source Detection and PSF Characterization

Perform deeper detection using **DAOSTARFINDER**

Select reliable sources with (roundness₁² + roundness₂² < 0.3)

Cross-match detections with **Pan-STARRS DR2** (16–20 mag)

Fit PSF using CIRCULARGAUSSIANPRF model on 15×15 pixel cutouts

Derive per-exposure PSF from σ-clipped mean FWHM across CCDs

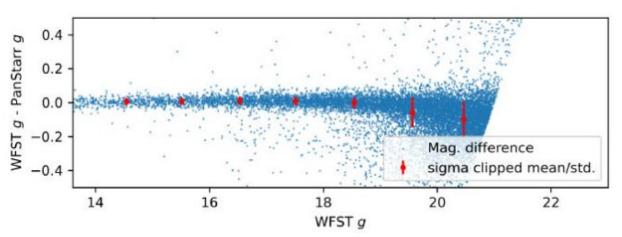
5. PSF Photometry

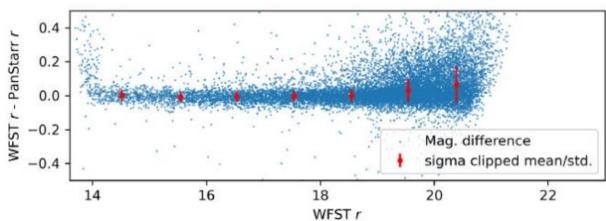
Conduct PSF-fitting photometry with PSFPHOTOMETRY (fixed FWHM) Measure source position, PSF flux, and photometric quality metrics

Data Reduction

Photometric and Astrometric Calibratio

• The well-measured sources


$$2.5 < \log_{10}(\text{flux}) < 5$$


$$-0.1 < \text{cfit} < 0.1,$$
 qfit < 0.1,

$$flags = 0$$
,

$$mag_{err} < 0.1$$
.

- cross-matched with the **Pan-STARRS DR2** catalogue to calibrate the **photometric zero-point**.
- cross-matched with the **Gaia DR3** catalogue to calibrate the **astrometric positions** and the world coordinate system (WCS) of the exposure.

Image Stacking and Final Catalogues

- Stack calibrated exposures using **SWARP** with variance-based weights
- Perform photometry on stacked g and r images
- Cross-match multiband data → generate final source catalogues

Data Reduction

Cluster members selection

- > Construct CMD: Build the colour—magnitude diagram (CMD) using two-band photometry.
- **Central Region Selection:**

Select stars within 0.1° of cluster center as the initial sample.

Apply Gaia DR3 proper motion and parallax cuts to remove obvious field stars.

> clustering algorithm HDBSCAN (Pedregosa et al. 2011)

Compare all stars to fiducial sample in CMD using distance metric

$$d = \sqrt{((g-r) - (g-r)_i)^2 + (r-r_i)^2}.$$

Select candidate members with ≥ 3 fiducial stars satisfying distance threshold (d < 0.02, relaxed to 0.08 for NGC4147).

Background Estimation and Final Density Map:

Select CMD region dominated by Galactic thick disc.

Compute background number density and scale to match cluster density at 0.6°–1.2° from cluster center.

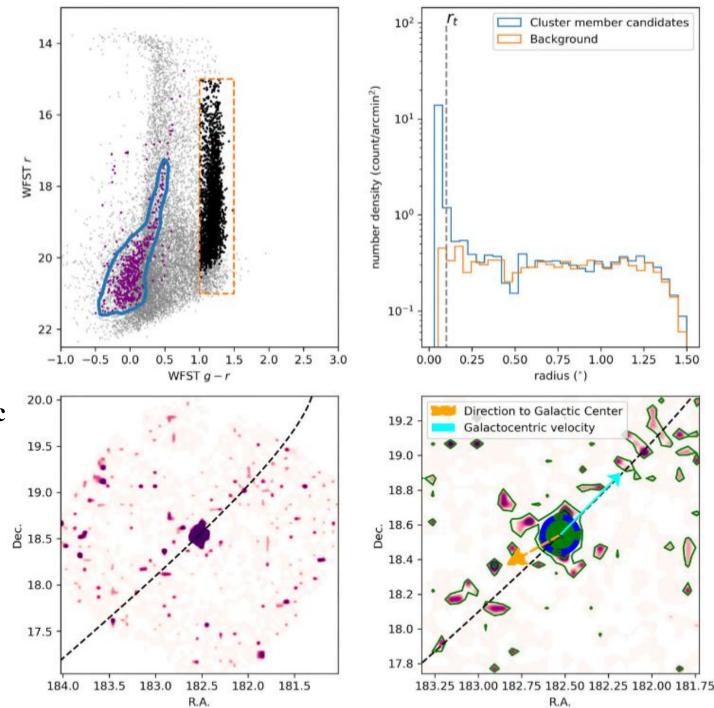
Subtract scaled background from candidate stars to obtain clean member density distribution.

Notes on Uncertainties:

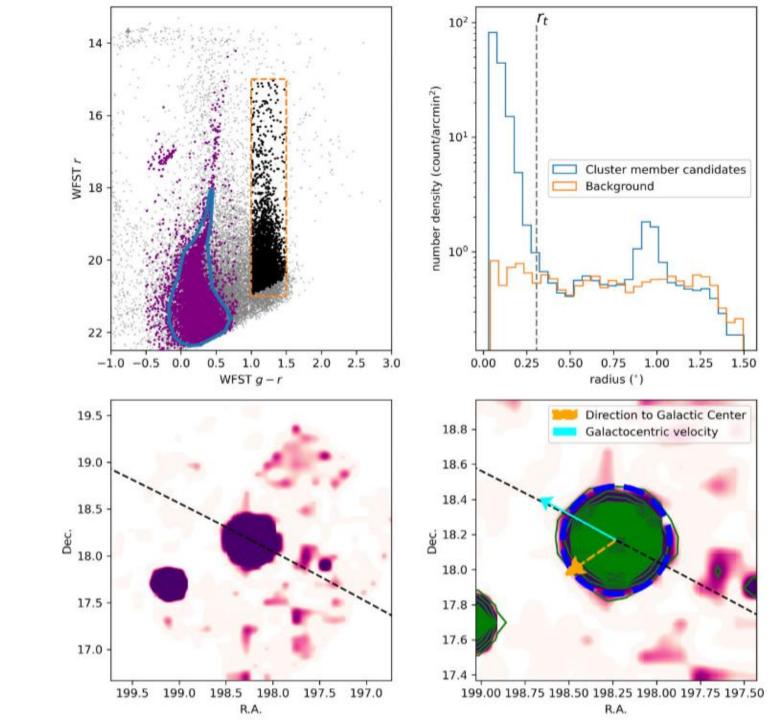
Photometric errors, CCD effects, PSF variations.

Differential reddening is negligible for these clusters.

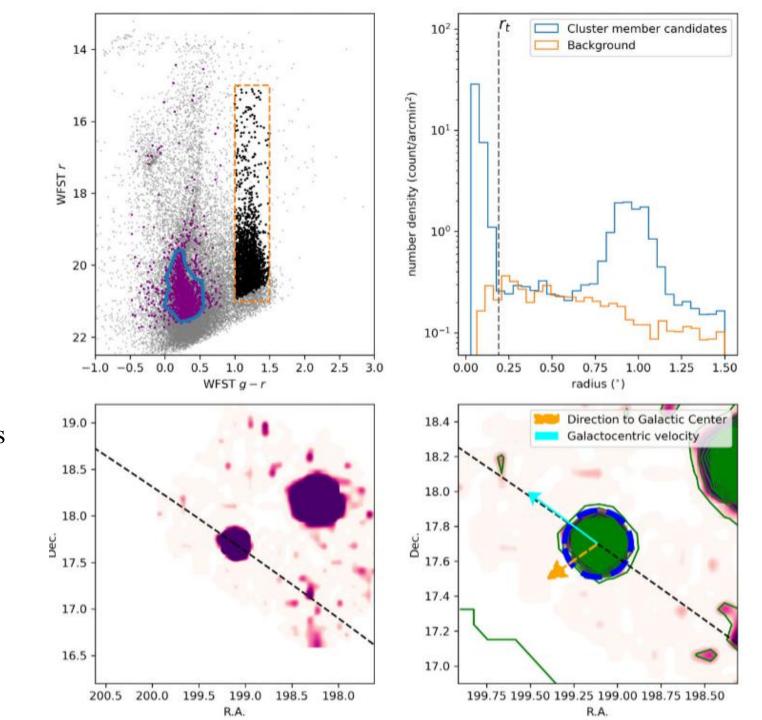
Part I Introduction

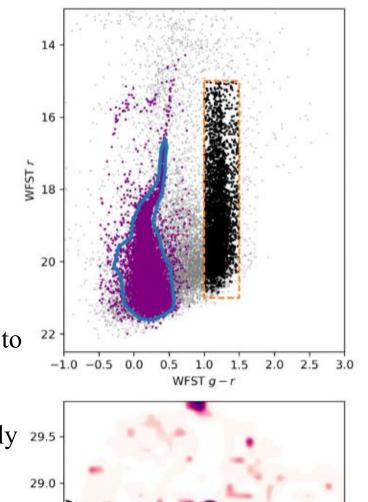

Part II Data

Part III Data Reduction

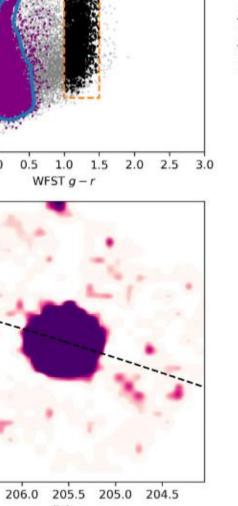

Part IV Result and Discussions

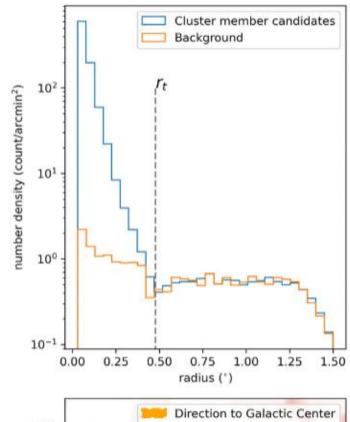
Morphological Features

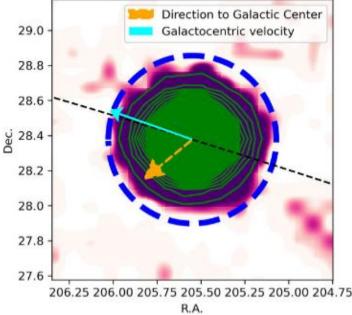

- Heliocentric distance: 18.54 ± 0.21 kpc
- Orbit eccentricity: $e \approx 0.87$
- Clear extension of member stars beyond the tidal radius (~0.2°)
- Arm-like overdensity consistent with previous detections
- Northern arm aligns with Galactocentric velocity, extends beyond 0.5°
- Eastern weak arm suggests multi-arm structure, consistent with simulations (Montuori et al. 2007)
- Low-significance overdensities along the orbit direction may trace tidal tails


- Heliocentric distance: $18.50 \pm 0.18 \text{ kpc}$
- Orbital eccentricity: e ~ 0.42
- Tidal features: Extended stellar extensions beyond tidal radius (0.3°–0.4° annulus)
- Detected high-significance outer overdensities at:
- (RA, Dec.) = $(197.60^{\circ}, 18.05^{\circ})$
- (RA, Dec.) = $(197.40^{\circ}, 18.00^{\circ})$
- Overdensities aligned with orbital path →
 likely tidal debris

- Heliocentric distance: 17.54 ± 0.23 kpc
- Orbital eccentricity: $e \sim 0.25$
- Photometric overlap with NGC 5024 →
 minor contamination in sample
- Mild elongation along western axis
- Overdensity detected at (RA, Dec.) =
 (197.75°, +17.40°) → probable tidal debris

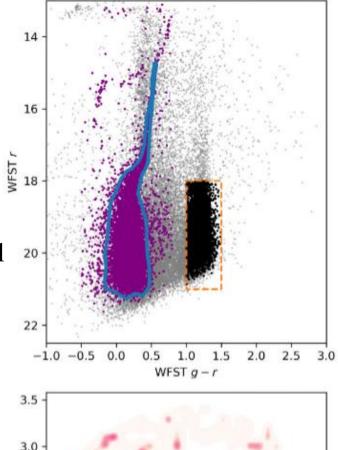

- Heliocentric distance: 10.18 ± 0.08 kpc
- Orbital eccentricity: $e \sim 0.50$
- No clear extension beyond tidal radius
- SE direction: intriguing aligned overdensities $(RA, Dec.) = (204^{\circ}.7, +27^{\circ}.9)$
 - Three aligned high-density regions. Close to cluster orbit, possible tidal extension
- Opposite direction: slight elongation, potentially 29.5 symmetric tidal tail
- Low brightness and spatial coherence suggest a 2 28.5 faint tidal feature
- If confirmed, could provide insight into cluster's dynamical history

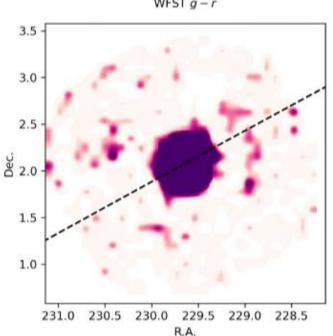


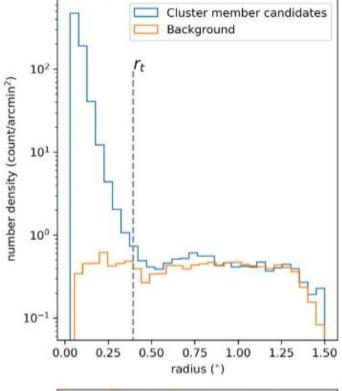

28.0

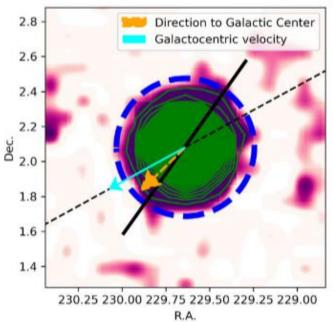
27.0

206.5

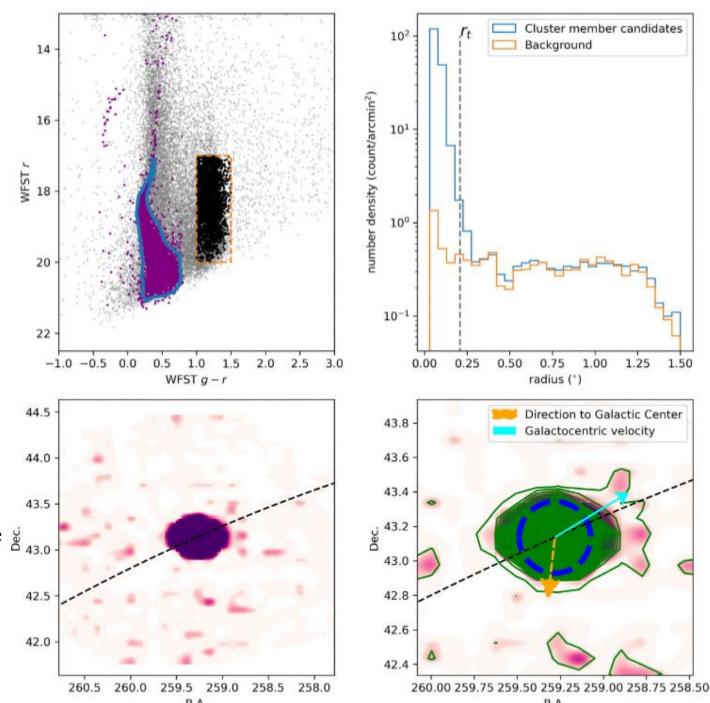

- Heliocentric: 7.48 ± 0.06 kpc
- Galactocentric: $6.27 \pm 0.02 \text{ kpc}$
- Orbital eccentricity: $e \sim 0.76$


Tidal Features & Density Distribution


- Clear stellar extensions beyond tidal radius (0.6°-0.8° annulus)
- Peripheral deformation with north—south tidal arms
- Multiple overdensities beyond tidal radius, Symmetric features at (RA, Dec.) = $(230^{\circ}.6, +2^{\circ}.2)$ east and $(229^{\circ}.1, +1^{\circ}.9)$ west


Dynamics vs. Tidal Features

- Structures aligned with known rotational axis (Lanzoni+2018)
- North—south tidal arms ≈ rotation axis direction
- East—west symmetric overdensities ≈ perpendicular to rotation axis
- Suggests link between internal rotation and external tidal morphology



- Heliocentric: 8.50 ± 0.07 kpc
- Galactocentric: $9.85 \pm 0.04 \text{ kpc}$
- Orbital eccentricity: $e \sim 0.79$
- Cluster member candidates detected beyond tidal radius
- Spatial distribution shows elliptical density extension
- Low-confidence three-branched extension along Galactocentric velocity direction

Part I Introduction

Part II Data

Part III Data Reduction

Part IV Result and Discussions

Conclusions

- WFST completed a pilot survey, conducting deep imaging of five GCs in the Northern sky.
- Each cluster's center was covered within a 1.5° radius; exposure limits were ~21.5–22 mag, with future surveys expected 2 mag deeper.
- Member candidates were selected from specific CMD regions; background density estimated from thick disc fields.
- NGC 4147 shows northern and southern tidal arms and a mild multi-arm structure, potentially linked to the Milky Way or the Sgr stream.
- NGC 5024, NGC 5053, and NGC 5272 show no direct tidal connections, but potential overdensities exist near their orbital paths.
- NGC 5904 exhibits symmetric north-south arm-like structures aligned with its rotational axis; overdensities may be related to velocity gradients along tidal arms.
- NGC 6341 displays an elliptical contour beyond the tidal radius, possibly from internal rotation or tidal arm extensions; peripheral stars may no longer be gravitationally bound.
- WFST demonstrates strong capabilities for deep photometry, crucial for GC population studies, multiple populations, and time-series variable star investigations.
 Thanks