

Could very low-metallicity stars with rotation-dominated orbits have been shepherded by the bar?

Zhen Yuan (袁珍), Chengdong Li (李承东), Nicolas F. Martin, Giacomo Monari, Benoit Famaey, Arnaud Siebert, Anke Ardern-Arentsen, Federico Sestito, Guillaume F. Thomas, Vanessa Hill, Rodrigo A. Ibata, Georges Kordopatis, Else Starkenburg, and Akshara Viswanathan

December 29, 2023 Shao Qinhao

outline

- Introduction
- Data
- Models
- Results
- Discussions & Conclusion

Introduction

Very low-metallicity stars were discovered more than two thousands

In particular, these stars are close to the Sun's orbit.

Several hundred stars are rotation-dominated and prograde

Where did these very low-metallicity prograde stars come from?

- (1) accreted from small satellites with specific orbits through minor mergers;
- (2) brought in during the early assembly of the proto-Milky Way disc;
- (3) formed in-situ from pockets of pristine gas at early times pushed into the solar neighborhood;
- (4) originally in the inner Galaxy, that gained rotation and moved outwards due to the bar resonances.

AGAMA use the potential to model dynamical evolution

The potential of the bar:

$$\Phi_b(r,\theta,\phi,t) = \Phi_{br}(r)\sin^2\theta\cos m(\phi - \Omega_b t - \phi_b)$$

only consider the m=2 quadrupole term

 Ω_b : the pattern speed

 ϕ_b : the phase angle, t=0

 Φ_{br} : the radial dependence of the bar potential

$$\Phi_{br}(r) = -\frac{AV_C^2}{2} \left(\frac{r}{r_{CR}}\right)^2 \left(\frac{b+1}{b+r/r_{CR}}\right)^5$$

A: the potential strength of the bar

 V_c : the circular velocity in the solar vicinity

 $b=r_b/r_{CR}$: the bar's scale length r_b / the co-rotation radius r_{CR}

The steadily rotating bar: $\Omega_b = -35 \ km s^{-1} kpc^{-1}$

The decelerating bar: $\Omega_b = -88 \ kms^{-1}kpc^{-1}$ at t=-6Gyr, $\Omega_b = -38 \ kms^{-1}kpc^{-1}$ at t=0

The potential of the spiral arms: (two-arm model)

$$\Phi_{S}(R,\theta,z) = -4\pi G \Sigma_{0} e^{-R/R_{S}} \sum_{n} \frac{C_{n}}{K_{n} D_{n}} cosn \gamma \left[\cosh(\frac{K_{n} z}{\beta_{n}}) \right]^{-\beta_{n}}$$

 Σ_0 : the central surface density

 C_n (n = 1,2,3): the amplitudes of the three harmonic terms, $C_1 = \frac{8}{3\pi}$, $C_2 = \frac{1}{2}$, $C_3 = \frac{8}{15\pi}$

The functional parameters:

$$K_n = \frac{nN}{Rsin\alpha}$$

$$D_n = \frac{1}{1+0.3K_n h_s} + K_n h_s$$

$$\beta_n = K_n h_s (1 + 0.4 K_n h_s)$$

$$\gamma = N[\phi - \frac{\ln\left(\frac{R}{R_s}\right)}{\tan\alpha} - \Omega_p t - \phi_0]$$

N: the number of arms

 h_s : the scale height

 α : the pitch angle

 ϕ_0 : the phase

Bar	$\Omega_{ m b}$	A	$v_{\rm c}$	b	$r_{\rm CR}$	$\phi_{ m b}$	
Values	-35	0.02	235	0.28	6.7	28°	
Spiral arm	Ω_{p}	$R_{ m s}$	$h_{ m s}$	N	α	ϕ_0	Σ_0
Values	-18.9	1.0	0.1	2	9.9°	26°	2.5×10^{9}

four different perturbation setups:

- (i) constant bar only,
- (ii) constant bar + spiral arms,
- (iii) decelerating bar only,
- (iv) decelerating bar + spiral arms

Results

In the model of steadily rotating bar: No significant change.

In the model of decelerating bar:

The particles with $J_{\phi} \leq 1000 km s^{-1}$ have gained stronger rotations, but as long as 8%.

Results

The density contour plot of the change in the $(\Delta J_{\phi}, \Delta J_z)$ space for all particles

- (1) spiral arms have little effect on the actions of the particles.
- (2) The majority of the particles in fact lose rotation within the 6 Gyr and only a small fraction of them (19%) gain rotation from interactions with the decelerating bar.

the bar's corotation resonance-trapped regions

Summary & Discussions

- A rotating bar cannot be a robust mechanism to explain the existence of these observed stars.
- These old prograde planar stars that are currently present in the solar neighborhood possibly have varied origins.

They were either born in-situ in the proto-MW disc, came from accreted systems that merged onto the MW with very prograde orbits, or were brought in with the clumps that formed the proto-MW.

- From the modeling aspect, there are key limitations:
- (a) The decelerating bar model is only a toy model that cannot represent the true evolution history of the bar in the Galaxy.
- (b) The test-particle simulation method does not include any response of the stellar systems to the perturbations by the bar and the spiral arms that is due to the self-gravity of the system itself.
- (c) the method does not take into account the evolution/increase of the background potential of the Galaxy.
- On the observational side, the strong selection effect of different ground-based survey samples used in this work may lead to misunderstanding their true distribution.