The Zwicky Transient Facility Bright Transient Survey. III. BTSbot: Automated Identification and Follow-up of Bright Transients with Deep Learning Nabeel Rehemtulla , Adam A. Miller , Theophile Jegou Du Laz , Michael W. Coughlin , Christoffer Fremling , Adam A. Perley , Yu-Jing Qin , Jesper Sollerman , Ashish A. Mahabal , Russ R. Laher , Reed Riddle , Ben Rusholme , And Shrinivas R. Kulkarni ¹Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA ²Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA), 1800 Sherman Ave., Evanston, IL 60201, USA ³Division of Physics, Mathematics, and Astronomy 249-17, California Institute of Technology, Pasadena, CA 91125, USA ⁴School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA ⁵Caltech Optical Observatories, California Institute of Technology, Pasadena, CA 91125, USA ⁶Astrophysics Research Institute, Liverpool John Moores University, IC2, Liverpool Science Park, 146 Brownlow Hill, Liverpool L3 5RF, UK Department of Astronomy, The Oskar Klein Center, Stockholm University, AlbaNova, SE-10691 Stockholm, Sweden Center for Data Driven Discovery, California Institute of Technology, Pasadena, CA 91125, USA IPAC, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125, USA # Lunwei Zhang 2024-05-17 #### Outline Part I Introduction Part II Data and Method Part III Results and Disscusion Part IV Summary ## Part I Introduction #### 1.1 Introduction - The goal of the Bright Transient Survey (BTS) is to spectroscopically classify all extragalactic transients brighter than 18.5 mag (<18.5 mag)in either the g-ZTF or r-ZTF-filters at peak brightness and immediately announce those classifications to the public. - Some of the largest SN population studies conducted to date (e.g., Perley et al. 2020; Irani et al. 2022; Sharon & Kushnir 2022; Sollerman et al. 2022; Rodr´ıguez et al.2023; Cold & Hjorth 2023; Sharma et al. 2023) - The survey also provides unique discoveries (e.g., Goobar et al. 2023; Yang et al. 2021) - Paving the way for using SNe to study large scale structure (Tsaprazi et al. 2022) #### 1.2 Introduction-previous work Figure 1. Coverage maps for the ZTF MSIP surveys, in the g_{ZTF} (left panel) and r_{ZTF} bands (right panel) between 2018 April 1 and 2018 December 31. The colored rectangles represent the fixed ZTF main field grid. The color intensity indicates the number of observations during this time period, truncated to a maximum of 65. #### 1.1 Introduction-previous work THE ASTROPHYSICAL JOURNAL, 895:32 (19pp), 2020 May 20 © 2020. The American Astronomical Society. All rights reserved. https://doi.org/10.3847/1538-4357/ab8943 #### The Zwicky Transient Facility Bright Transient Survey. I. Spectroscopic Classification and the Redshift Completeness of Local Galaxy Catalogs C. Fremling¹, A. A. Miller^{2,3}, Y. Sharma¹, A. Dugas^{1,4}, D. A. Perley⁵, K. Taggart⁵, J. Sollerman⁶, A. Goobar⁷, M. L. Graham⁸, J. D. Neill¹, J. Nordin⁹, M. Rigault¹⁰, R. Walters^{1,11}, I. Andreoni¹, A. Bagdasaryan¹, J. Belicki¹¹, C. Cannella¹², E. C. Bellm⁸, S. B. Cenko¹³, K. De¹, R. Dekany¹¹, S. Frederick¹⁴, V. Z. Golkhou^{8,15,21}, M. J. Graham¹, G. Helou¹⁶, A. Y. Q. Ho¹, M. M. Kasliwal¹, T. Kupfer¹⁷, R. R. Laher¹⁶, A. Mahabal^{1,18}, F. J. Masci¹⁶, R. Riddle¹¹, B. Rusholme¹⁶, S. Schulze¹⁹, D. L. Shupe¹⁶, R. M. Smith¹¹, S. van Velzen^{14,20}, Lin Yan¹¹, Y. Yao¹, Z. Zhuang¹, and S. R. Kulkarni¹ Figure 2. Cadence distribution for the ZTF NSS, in the $g_{\rm ZTF}$ - (blue bars) and $r_{\rm ZTF}$ -band (red bars), truncated at six days. Cumulative distributions are shown as a blue solid line for the g band and a red dashed line for the r band. $N/N_{\rm tot}$ is the fraction of observations at a specific cadence compared to the total number of observations between 2018 Apr. 1 and 2018 Dec. 31. 761 BTS SNe 2018 Apr. 1 to 2018 Dec. 31 #### 1206 BTS #### https://doi.org/10.3847/1538-4357/abbd98 #### The Zwicky Transient Facility Bright Transient Survey. II. A Public Statistical Sample for Exploring Supernova Demographics* Daniel A. Perley¹®, Christoffer Fremling²®, Jesper Sollerman³®, Adam A. Miller⁴,⁵®, Aishwarya S. Dahiwale², Yashvi Sharma²®, Eric C. Bellm⁵®, Rahul Biswas³®, Thomas G. Brink⁵®, Rachel J. Bruch⁵®, Kishalay De²®, Richard Dekany¹⁰®, Andrew J. Drake², Dmitry A. Duev²®, Alexei V. Filippenko⁵, Avishay Gal-Yam¹²®, Ariel Goobar³®, Matthew J. Graham², Melissa L. Graham⁵®, Anna Y. Q. Ho²,8,13®, Ido Irani¹²®, Mansi M. Kasliwal²®, Young-Lo Kim¹⁴®, S. R. Kulkarni²®, Ashish Mahabal²,15®, Frank J. Masci¹6®, Shaunak Modak⁵®, James D. Neill²®, Jakob Nordin¹³®, Reed L. Riddle¹⁰®, Maayane T. Soumagnac⁵,18®, Nora L. Strotjohann¹²®, Steve Schulze¹²®, Kirsty Taggart¹®, Anastasios Tzanidakis²®, Richard S. Walters², and Lin Yan¹⁰® #### 1.2 Introduction-Motivations - BTS critically relies on visual inspection ("scanning") to select targets for spectroscopic follow-up, which, while effective, has required a significant time investment over the past ~5 yr of ZTF operations; - Under the large, wide-field time-domain surveys, alert filters are needed to identify candidate sources of interest; - Adopting ML will be near-compulsory to efficiently extract knowledge from the next generation of surveys; - While appropriate in some cases with traditional ML or CNN, limiting these models to extracted features alone ignores potentially valuable information present in the images from which the features are extracted. 2024/3/15 ## Part II Data and Method #### 2.1 Data ## BTS only from ZTF 1/3 query "trues" "vars" "dims" "rejects" | _ | | | |---------------|-------------------|------------------| | Name of Query | Number of Sources | Number of Alerts | | | Initial queries | | | $trues^a$ | 5,212 | 308,934 | | vars | 1,127 | 150,017 | | $dims^{C}$ | 8,979 | 249,087 | | $_{rejects}d$ | 4,417 | $407,\!357$ | | Total | 19,735 | 1,115,395 | 2/3 humman "Humman Scanner" | ble 4. | BTShot | metadata | features | | |--------|--------|----------|----------|--| | reature name | Definition [unit] | | |-----------------------|---|--| | Alert packet metadata | | | | sgscore{1,2} | Star/Galaxy score of nearest two PS1 sources | | | $distpsnr{1,2}$ | Distance to nearest two PS1 sources [arcsec] | | | fwhm | Full Width Half Max [pixels] | | | magpsf | magnitude of PSF-fit photometry [mag] | | | sigmapsf | 1- σ uncertainty in magpsf [mag] | | | chipsf | Reduced χ^2 of PSF-fit | | | ra | Right ascension of source [deg] | | | dec | Declination of source [deg] | | | diffmaglim | $5-\sigma$ magnitude detection threshold [mag] | | | ndethist | Number of previous detections of source | | | nmtchps | # of PS1 cross-matches within 30 arcsec | | | drb | Deep learning-based real/bogus score | | | ncovhist | # of times source on a field and read channel | | | chinr | χ parameter of nearest source in reference | | | sharpnr | sharp parameter of nearest source in reference | | | scorr | Peak-pixel S/N in detection image | | | sky | Local sky background estimate [DN] | | | Custom metadata | | | | | | | days_since_peak Time from first to brightest alert [days ${\tt days_since_peak} + {\tt days_to_peak}$ Source's minimum magpsf thusfar [mag] maxmag_so_far Source's maximum magpsf thusfar [mag] 3/3 clean | ,317 | |------| | ,934 | | ,934 | | ,478 | | ,663 | | | #### 2.1 Data Table 1. Training set size before/after cleaning cuts | Name of Query | Number of Sources | Number of Alerts | |---------------|----------------------|------------------| | | Initial queries | | | $trues^a$ | 5,212 | 308,934 | | $_{vars}b$ | 1,127 | 150,017 | | $dims^{C}$ | 8,979 | 249,087 | | rejects d | 4,417 | 407,357 | | Total | 19,735 | 1,115,395 | | | Cleaned training set | t | | $trues^a$ | $5,\!206$ | 264,317 | | vars b | 1,126 | 109,934 | | $dims^{C}$ | 8,824 | 223,934 | | $_{rejects}d$ | 4,402 | 241,478 | | Total | 19,558 | 839,663 | $[^]a {\rm Spectroscopically}$ confirmed bright ($m_{\rm peak} \leq 18.5\,{\rm mag})$ extragalactic transients. #### on source Validation: 9% test: 10% $[^]b\,\mathrm{Sources}$ classified as AGN, CVs, VarStars, or QSOs. $^{^{}c}$ Dim ($m_{\text{peak}} > 18.5 \,\text{mag}$) sources with transient-like light curves. $[^]d$ Sources not marked as bright extragalactic transients by BTS scanners. #### 2.2 Method #### Convolution #### **CNN** Credit from the Internet VGG network #### 2.2 Method-BTSbot Motivation: the images and the extracted features provide complementary information for performing our task The architecture of BTSbot | Table 2. BTSbot layer configurations | | | |--------------------------------------|--|------------------------------------| | Layer type | Layer parameters | Hyperparameter search range | | Convo | | | | 2D Conv. | $32 \text{ filters}, 5 \times 5 \text{ kernel}$ | $8-128 ext{ filters}^a$ | | 2D Conv. | $32 \text{ filters}, 5 \times 5 \text{ kernel}$ | [3, 5, 7] kernel size ^a | | Max pool | 2×2 kernel | - | | Dropout | 0.50 | 0.1 - 0.8 | | 2D Conv. | 64 filters, 5×5 kernel | $8-128 ext{ filters}^a$ | | 2D Conv. | 64 filters, 5×5 kernel | [3, 5, 7] kernel size ^a | | Max pool | 4×4 kernel | - | | Dropout | 0.55 | 0.1 - 0.8 | | Metadata branch | | | | Batch norm. | - | - | | Dense | 128 units | 32-256 units | | Dropout | 0.25 | 0.1 - 0.8 | | Dense | 128 units | 32-256 units | | Combined section | | | | Dense | 8 units | 8-128 units | | Dropout | 0.20 | 0.1 - 0.8 | | Dense | 1 unit | _ | | a . | | | ^aAll 2D Convolutional (Conv.) layers have the same search range for filter counts and kernel size. | Table 3. BTSbot hyperparameters | | | |---------------------------------|---------------------|---------------------------------| | Parameter name | Optimized val | lue Hyperparameter search range | | batch size | 64 | 8-64 | | ${\rm Adam}\beta_1$ | 0.99 | 0.81 - 0.999 | | Adam β_2 | 0.99 | 0.9 - 0.9999 | | learning rate (α) | 10^{-4} | $10^{-2} - 5 \times 10^{-6}$ | | α decrease factor | 0.4 | 0.25 - 0.75 | | $lpha_{ m min}$ | 5×10^{-10} | $10^{-10} - 10^{-5}$ | | $N_{ m max}$ | 100 | $1-\infty$ | | · | | | #### 2.2 Method-BTSbot BTSbot has been integrated in Fritz and Kowalski to enable running in real-time on incoming alert packets from IPAC's alert-producing and brokering system. Example: About 14 hours before the first TNS report, SN 2023ixf was detected by ZTF, and, just minutes later, this alert packet was assigned a bright transient score of 0.840 by an early version of BTSbot. 13 ## Part III Results and Discussion #### 3.1 Results 1) ROC 2) Confusion Matrix 2024/5/17 100% 90% 80% 17.0 The completeness curve is exactly 100% in all peak magnitude bins, giving perfect overall completeness. Peak magnitude Completeness 17.5 Purity 18.5 - 15 18.0 BTSbot acts as quickly as human scanners on new bright transients Days after action by scanner 15 10 #### 3.2 Discussion-misclassifications bts_p1: A source have at least two alerts with high (≥ 0.5) bright transient score and magpsf ≤ 19 mag before being saved and having an SEDM trigger sent at priority 1; bts_p2: A source meet bts_p1 as well as having at least one alert with magpsf ≤ 18.5 mag before a trigger being sent with priority 2 16 ### 3.2 Discussion-performance-present-day Test split robust and representative, but includes many alerts that are years old and a subtle data shift can have associated biases 2460175.5(19 August 2023) < JD < 2460216.5 (29 September 2023) Performance is very similar to the metrics computed from test split data #### 3.3 Discussion-comparion with similar models ALeRCE ACAI (SN, AGN, VarStar, asteroid, bogus) (hosted, orphan, nuclear, VarStar, bogus) Neither the stamp classifier nor ACAI learn class definitions that are sensitive to the source's brightness. ## Part IV Conclusion and future work #### 4.1 Summay - Presented a new multi-modal binary classifier, BTSbot, to automated classify bright transient / not bright transient; ~95% accuracy on input alerts and identified 100% in our test split with 93% purity; - BTSbot focus on relatively narrow domain(m_peak ≤ 18.5 mag, reject other extragalactic transients and all other sources), but significantly more alerts (608,943) than other models with similar architectures, such as the ALERCE stamp classifier (~52,000; the ACAI models (~200,000); - BTSbot acts as quickly as human scanners on new bright transients(fig 7) and particularly well suited for the automated identification of very young transients; - BTSbot joins a rich collection of ML models and automation tools central to daily BTS operations, has been integrated into Fritz and Kowalski and now sends automatic spectroscopic follow-up requests for the new transients it identifies BTSbot has been integrated in Fritz and Kowalski to enable running in real-time on incoming alert packets from IPAC's alert-producing and brokering system. #### BTS workflow BTS weblink: https://sites.astro.caltech.edu/ztf/bts/bts.php # Thank you for your attention! Q&A | Table 4. BTSbot metadata features | | | |-------------------------------------|--|--| | Feature name | Definition [unit] | | | | Alert packet metadata | | | $sgscore\{1,2\}$ | Star/Galaxy score of nearest two PS1 sources | | | $\mathtt{distpsnr}\{\mathtt{1,2}\}$ | Distance to nearest two PS1 sources [arcsec] | | | fwhm | Full Width Half Max [pixels] | | | magpsf | magnitude of PSF-fit photometry [mag] | | | sigmapsf | 1- σ uncertainty in magpsf [mag] | | | chipsf | Reduced χ^2 of PSF-fit | | | ra | Right ascension of source [deg] | | | dec | Declination of source [deg] | | | diffmaglim | $5-\sigma$ magnitude detection threshold [mag] | | | ndethist | Number of previous detections of source | | | nmtchps | # of PS1 cross-matches within 30 arcsec | | | drb | Deep learning-based real/bogus score | | | ncovhist | # of times source on a field and read channel | | | chinr | χ parameter of nearest source in reference | | | sharpnr | sharp parameter of nearest source in reference | | | scorr | Peak-pixel S/N in detection image | | | sky | Local sky background estimate [DN] | | | Custom metadata | | | | days_since_peak | Time since brightest alert [days] | | | $days_to_peak$ | Time from first to brightest alert [days] | | | age | ${\tt days_since_peak} + {\tt days_to_peak}$ | | | $peakmag_so_far$ | Source's minimum magpsf thusfar [mag] | | | $maxmag_so_far$ | Source's maximum magpsf thusfar [mag] | | | $_{\tt nnondet}^a$ | ncovhist - ndethist | | ## ZTF-limiting magnitude Figure 6. Left: histogram of five-sigma limiting magnitudes in 30 s exposures for g (blue), r (orange), and i (red) bands over one lunation. Right: limiting magnitudes for observations obtained within ± 3 days of new moon. (A color version of this figure is available in the online journal.) Median Sensitivity $$m_g = 20.8, m_r = 20.6, m_i = 19.9$$ $(30 \text{ s}, 5\sigma)$ $m_g = 21.1, m_r = 20.9, m_i = 20.2 \text{ (new moon)}$ ## Metadata features Days_to_peak (purple),days_ since _peak (green), age (navy), peakmag so far (upper dashed gray), and maxmag so far (lower dashed gray)