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Introduction

Distance indicators, estimating
distances to galaxies within and beyond
the Local Group and measuring the
Hubble constant

Helps us to understand the evolution
and physics of stars themselves(Stellar
variability)

Tracing new structures or better study
the Galactic plane, the spiral arms, and
the solar neighborhood

Studying chemical composition of
different galactic regions

Studying planetary formation through
premain-sequence stars
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Time-domain surveys
® OGLE(Udalski et al., 1993; Soszynski., 2015,
Soszynski., 2016, Soszynski., 2018),
® ASAS(Pojmanski, 2002),
® CRTS; (Drake et al., 2009;Djorgovski et al., 2011),
® ZTF(Bellm et al., 2019),
® Vera C. Rubin Observatory (LSST Science
Collaboration et al., 2009)
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Introduction-Motivations

® Classifying these sources based on their light curves us in understanding the
responsible mechanisms behind the variability and provides insight into their interior
structure and formation;

® Development of for classifying variable star’s light curves has seen
an in recent years and has formed the core of many latest studies;

® Time-series data might be (and therefore not good enough to estimate the
period) and can contain in the observations;

® Recent studies focus on employing the and take advantages from
the improved (DL) frameworks.

2024/3/15 6



Part IT Data and Method

222222222



2.1 Data

Only a few of
classes which have
enough number of
distinct light curves

( )

selected
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Class

OGLE dataset

Classical Cepheids

§ Scuti

Eclipsing Binaries
Long Period Variables
RR Lyrae

CRTS dataset

Contact Binaries
Long Period Variables
Detached Binaries
RR Lyrae type 1

RR Lyrae type 2

RR Lyrae type 3
Rotating Variables

Representation

CEPH
DSCT
ECLP
LPV
RRL

4683
2431
28,473
502
1522

60% training set,20% validation set 20% test set

Using the two datasets separately for training and testing the
2D CNN and 1D CNN-LSTM models!!!



2.2 Method

CHOCEINC

Convolution
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CNN
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2.2 Method-Pre-processing

53 along x-axis and 90 along y-axis((R, G, and B))

Cepheids 6-Scuti RR Lyrae

Original light curve

5500 6000 6500 7000

Raw light curve data

Freedman-Diaconis (Freedman and Diaconis, 1981)

Representative bi-dimensional histograms generated from the OGLE light
curves. The blue and yellow color represent the pixels with the least and the
most number of points respectively.
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2.2 Method

—|

OGLE
90 x 53 x 3

OGLE 359

CRTS 546
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1/2 CNN

Conv 2D MaxPooling

Input (90 x 53 x 3) Input (90 x 53 x 64)

Filter (3 x 3)

f fiters 64
Relu
e 90 x 53 x 64
arams 1792

Pooling Window (2 x 2)
Output Shape 45 x 26 x 64

Dropout

Dropout rate of
0.1 used.
Therefore, 10 %
of the neurons are
dropped out

Conv 2D

Input (45 x 26 x 64)

5x5
128
Relu

41x22x128

s 204928

Conv 2D

Input (45 x 26 x 64)

5x5
256
Relu

37 x 18 x 256

s 819456

2/2 1DCNN LSTM

OO000O0OO000O

Fully Connected

-“CcCQOQUO>IDO
0/0]0]0/0]0/0/0/0]0)

O CEPH
O psct
O EcLP
QO Lpv
O RAL

2 Dense Layers with 512 neurons & last Dense
Layer ftor prediction using Softmax activatio

Conv 1D I

Filter (3 x 1) Filter (3 x 1)

Input (359 x 1) Input (359 x 64)
64

Relu
359 x 64
256

Number of filters 128
Activation Relu
Output Shape 359x 128

Number of params 24704

Number of filters
Activation

Output Shape
Number of params

Conv 1D I

MaxPool

Pool
Window
(2x1)

Input (359 x 128)

Output Shape
179 x 128

Conv+Pool

ConviD
Number of filters 128
Filter Size 5x1

Activation Relu

ConviD
Number of filters 256
Filter Size 5x1

Activation Relu

MaxPool
Pool window 2x1
Output Shape 89 x 256

LSTM

LSTM_A1

Number of units 64
Activation Tanh
Output Shape 89 x 64

Number of params 82432

-4~

LSTM_2

Number of units 128
Activation Tanh
Output Shape 89 x 128

Number of params 99328

S

Fully Connected

£ 00000000000

OO0O0O0O00000O

eurons 512 Neurons

QO CEPH

Oopsct

(@)=t
O vrv
ORRL

Class prediction
using Softmax
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Part ITTI Results and Discussion
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1D CNN-LSTM on the OGLE and the CRTS

3.1 Results

Accuracy (%) Precision Recall
2D CNN on bi-dimensional histograms prepared ) =
: 5.0 6
from the OGLE and the CRTS survey light curves 26_6 ;

F1 score

Precision Recall

1D CNN-LSTM perform well on the OGLE dataset but

0.81 0.91 suboptimalon the CRTS dataset

0.56 0.52

2D CNN perform very well on the OGLE dataset but

suboptimalon the CRTS dataset Comparison of classification results for three variability classes

from the CRTS dataset using 2D CNN and 1D CNN-LSTM models.

A

CEPH JvA 0 0.004 0 0.2
DSCT- 0 0.837 0 0.163 0
ECLP- 0 0 0 0

0 0.93 0

True Class

LPV 0 0.07

CEPH DSCT ECLP LPV RRL

Predicted Class

2D CNN(OGLE)
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B

CEPH JOR-¥4:} 0 0.007 0.091
DSCT- 0 0.663 0.065 0.011

ECLP- 0.017 0.04 0.89 0.024

True Class

LPv- 0.102 0.006 0.026 0.848 0.019
RRL- 0.013 0 0.001 0.001 0.985 RRL- 0.018 0.108 0.05 0.045 0.779

CEPH DSCT ECLP LPV RRL
Predicted Class

1D CNN-LSTM (OGLE)

2D CNN perform better 1D CNN-LSTM on the OGLE

Predicted class

RRab
EW

RRc
EW
LPV
RRab

Classification models

2D CNN 1D CNN-LSTM

29%

51%

42%
50%
69%
13%

The superiority of the 1D LSTM-CNN model over 2D CNN in
distinguishing very similar looking light curyves



Part IV Conclusion and future work
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4.1 Summay

® Present two approaches for classifying variable stars using Deep Learning
techniques;

® For both 2D CNN and 1D CNN-LSTM, the classification performance on the
CRTS dataset is suboptimal;

® The performance of 1D CNN-LSTM model is not at par with the 2D CNN
approach;

® The degraded performance on the CRTS dataset as compared to the OGLE
dataset is a common difficulty faced by both the models;

® 1D CNN-LSTM model has the potential o perform the task of classifying
variable star light curves without any preprocessing.
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4 2 Future work

® [nvestigating the other binning strategies along with the ones proposed in Mahabal et al.
(2017)

® Performing detailed comparisons with the bidimensional histogram, 1D LSTM-CNN
approaches and other prevailing classification techniques

® Exploring the capability of the hyperparameter optimized model in classifying light
curves from different surveys and examining their performance in case of the sparse

light curves

® Using a combination of two parallel CNNs, a 1D CNN for the light curves and another 2D
CNN for the science (or difference) images

2024/3/15 16
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Research Status

® Traditionally, based on the similarity of their light curves and colors to known variable prototypes (Gaia
Collaboration et al. 2019).

® Time-series analysis: periodogram to differentiate between periodic and aperiodic variables.

® The results of the periodogram-based analysis are often taken, together with measures of light curve
morphology and other characteristics of the source (e.g., color) and used as inputs into a classifier (e.g.
Debosscher et al. 2007; Richards et al. 2011; Dubath et al. 2011; Richards et al. 2012; Masci et al.2014;
Jayasinghe et al. 2019a,b; Eyer et al. 2019).

® Non-parametric variability measures (Kinemuchi et al. 2006; Palaversa et al.2013; Drake et al. 2013, 20143,
2017; Torrealba et al. 2015; Hillenbrand &Findeisen 2015; Findeisen et al. 2015)

Classical Methods: carefully selected features of the light curves, such as statistical metrics (like mean,
standard deviation, kurtosis, skewness; see e.g., Nun et al. 2015), Fourier decomposition (Kim & Bailer-Jones
2016), or color information (Miller et al. 2015). Classifiers can be trained on manually designed (Pashchenko et
al. 2018; Hosenie et al. 2019) or computer-selected features (Becker et al. 2020; Johnston et al. 2020) using
known types of variable stars

2024/3/15 18



Research Status

Table B3. Light curve based ML classifiers that include only persistent variable objects (more than 2 classes) before
am—

2017. Class abbreviations are defined in Tables B7 to B11

Reterence

Data source

#classes

classes

Kim & Bailer-Jones (2016)

Mackenzie et al. (2016)

Pichara et al. (2016)

Nun et al. (2016)
Bass & Borne (2016)

Faraway et al. (2016)
Kiigler et al. (2015)

Kim et al. (2014)

Pichara & Protopapas (2013)

Richards et al. (2012)

Debosscher et al. (2009)

Debosscher et al. (2007)

MACHO,
LINEAR, ASAS

OGLE
MACHO
MACHO

EROS

MACHO
Kepler

OGLE
ASAS
EROS-2

SAGE, 2MASS,
UBVI, MACHO
ASAS

CoRoT

OGLE
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DSCT, RRL(ab, ¢, d, e),
Ceph(F, O1, other, II), E(C, SD, D),
LPV(MAGBC, MAGBO, OSARGAGB,
OSARGRGB, SRAGBC, SRAGBO), NV
Ceph(CL, II), RRL, E, DSCT, LPV
NV, QSO, BeS, Ceph, RRL, E, ML, LPV
BeS, Ceph, E, LPV, ML, NV, QSO, RRL
E, RRL, Ceph(F, 01, DM, II),
LPV(OSARGRGBO, SRAGBO,
SRAGBC, MAGBC, MAGBO)

NV, QSO, BeS, Ceph, RRL, E, ML, LPV
ACT, BCep, Ceph, DSCT, E, ELL, GDor, ROT,
RRL(ab, c), RVTau, SPB, SR, MISC/NV

Ceph, E, RRL
Mira, RRLab, E(C, D, SD), DSCT, CephF
DSCT, RRL(ab, ¢, d, &), Ceph(F, O1, Other), CephlI
E(C, SD, D, SD+D, Other), BeS, QSO, NV
LPV(MAGB(C, 0), OSARGAGB(C, 0),
OSARGRGB(C, 0), SRAGB(C, 0))
NV, QSO, BeS, Ceph, RRL, E, LPV

DSCT, SXPh, RRL(ab, ¢, d), Ceph(CL, MM, II),
Mira, SR, LPYVW(A, B), RVTau, BCep, RSG,
BPer, BLyr, WUMa, ChemPec, ELL, RSCvn,

HAeBe, CTTau, WLTTau, RCB, LBV, BeS
sdBV, DSCT, LBoo, SXPh, roAp, GDor,
RR(ab, ¢, d), Ceph(CL, DM, II), RVTau,

Mira, SR, PVSG, BCep, SPB, E,
ChemPec, ELL, FUQri, HAeBe, TTau,
LBV, WR, XB, BeS, LAPV
DAV, DBV, sdBV, GWVir,

DSCT, LBoo, SXPh, roAp, GDor,
RRL(ab, ¢, d), Ceph(Cl, DM, II),
PVSG, Mira, SR, RVTau, BCep, SPB,
E(C, 8D, D), ChemPec, ELL,

FUOri, HAeBe, TTau, LBV,

SLR, WR, XB, CV, BeS

F. Forster et al. 2020

Table B2. Light curve based ML classifiers that include only persistent variable classes (more than 2 classes) between 2017
and 2019. Class abbreviations are defined in Tables B7 to BI1
S —

Reference Data source

#£classes

classes

Rimoldini et al. (2019) Gaia DR2

Tsang & Schultz (2019) ASAS-SN

Jayasinghe et al. (2019) ASAS-SN

Hosenie et al. (2019) CSDR2
Johnston et al. (2019) UCR
LINEAR
OGLE+VVV
+CoRoT
MACHO
OGLE
ASAS
LINEAR
MACHO
OGLE
MACHO

Aguirre et al. (2019)
Castro et al. (2018)

Naul et al. (2018)

Valenzuela & Pichara (2018)

CSDR2
EROS,

Mahabal et al. (2017)
Benavente et al. (2017)

MACHO, HiTS

Zinn et al. (2017) OGLE
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E, CV, RSCvn, BLAP,
Mira+SR, DSCT+SXPh, RRL(ab, ¢, d, Ad),
CephCl, ACEP, Cephll,

Low amp..:DSCT+GDOR, ELL, OSARG, FL+ROT, Other

DSCT, RRL(ab, cd), Ceph, E, ROT,
Mira, SR
Ceph, DSCT, E(EW,EA—EB,EB), RRL(ab,c),
M, SR, Irregular
RRL(ab, ¢, d), Blazhko, E(C+SD,D),
ROT, LPV, DSCT, Ceph(II,A)
RRL, Ceph, E
RRL(ab, c), DSCT, E(C,SD)
Ceph(F, 01), RRL(ab, c¢),
E(C, SD+D), Mira, SR, OSARG
NV, QSO, BeS, Ceph, RRL, E, ML, LPV
Ceph, Cephll, RRL, E, DSCT, LPV
RRLab, Ceph, SR, BPer, WUMa
DSCT, RRL(ab, ¢), BPer, WUMa
Ceph(F, O1), LPVW, RRL(ab, ¢, ¢, GB)
Ceph(CL, 11, A), RRL, LPV, DPV, DSCT, E
RRL(ab, ¢, e, GB), Ceph(F, O1),
LPVW(A, B, C, D), E
E(C, SD), RRL(ab, ¢, d), RSCVn, LPV
Ceph, E, QSO, RRL, LPV

Mira, QSO, SR, OSARG, Ceph(F, O1),
RRL(ab+d, c+e)




Abbreviation

ZTF
HSC-SSP
UCR

0SC
ASAS-SN
CSDR2
HiTS
PS1-MDS
LINEAR
UBVI
VVV
OGLE
2MASS
SAGE

CoRoT
SDSS
MACHO
EROS
ASAS
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Table B5.Observational data sources used for ML classification.

Long name

Zwicky Transient Facility
Hyper Suprime-Cam Subaru Strategic Program
University of California Riverside
Time Series Classification Archive
Open Supernova Catalog
All-Sky Automated Survey for Supernovae
The Catalina Surveys Data Release 2
High cadence Transient Survey
Pan-STARRS-1 Medium Deep Survey
Lincoln Near-Earth Asteroid Research Survey
UBVI photometry of six open cluster candidates
Vista Variables in the Via Lactea
The Optical Gravitational Lensing Experiment
The Two Micron All Sky Survey
Spitzer Survey of the Large Magellanic Cloud:
Surveying the Agents of a Galaxy’s Evolution
Convection, Rotation, and planetary Transits
The Sloan Digital Sky Survey
Massive Compact Halo Objects survey
Expérience pour la Recherche d’Objets Sombres

All Sky Automated Survey

Reference

Bellm et al. (2019)
Aihara et al. (2018)
Dau et al. (2018)

Guillochon et al. (2017)
Kochanek et al. (2017)
Drake et al. (2017)
Forster et al. (2016)
Huber et al. (2011)
Sesar et al. (2011)
Piatti et al. (2011)
Minniti et al. (2010)
Udalski et al. (2008)
Skrutskie et al. (2006)
Meixner et al. (2006)

Baglin et al. (2006)
York et al. (2000)
et al. (2000)

Palanque-Delabrouille et al. (1998)

Pojmanski (1997)

F. Forster et al. 2020
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LSTM

N ‘p =a (”'f[h, ].J,'f] - b’,)

Forget Gate

i, :ff(”','-[/llfl..l'/] + [),')

Input Gate i G, = tanh(We - [hi—1, 2] + be)

Memory Ce" r Cy = fir % Ci_q +iy x C,

The repeating module in an LSTM contains four interacting layers.

op =0 (W, [he—1, 2] + by)

Output Gate

hy = oy * tanh (C})
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