

Estimating the IGM Baryon Mass Fraction Using Fast Radio Bursts

Z. Li, H. Gao, J.-J. Wei, Y.-P. Yang, B. Zhang, and Z.-H. Zhu(MN, May 2020)

Speaker: kongjun Zhang Date : 2025.4.18

Introduction to Fast Radio Bursts (FRBs)

• Definition

Fast Radio Bursts are millisecond-duration, intense radio pulses originating from extragalactic sources.

- Characteristics
- Some FRBs repeat, enabling detailed study.
- Possible origins include neutron stars or magnetars, though the exact mechanism remains unclear.

• Utility

FRBs produce a dispersion measure (DM), reflecting electron density along the line of sight, ideal for probing the intergalactic medium (IGM).

$$\mathrm{DM} = \int n_e \, \mathrm{d}l$$

where n_e is the electron density, useful for inferring IGM baryon content.

The Intergalactic Medium and the Missing Baryon Problem

• FRBs' Role in Addressing the Missing Baryon Problem

By measuring the dispersion measure (DM), FRBs can estimate the electron density in the IGM, helping quantify the baryon fraction (f_{IGM}) and address the missing baryon problem.

$$DM_{obs}(z) = DM_{MW,ISM} + DM_{MW}, halo + DM_{IGM}(z) + \frac{DM_{host}}{1+z}$$

Objective: Isolate DM_{IGM} to compute (f_{IGM}), the fraction of baryons in the IGM.

Challenges in Estimating (f_{IGM})

• Traditional Methods

Traditionally, DM_{IGM} is related to redshift (z) using a cosmological model:

$$DM_{IGM}(z) = \frac{3cH_0\Omega_b f_{IGM}}{8\pi Gm_p} \int_0^z \frac{f_e(z')(1+z')dz'}{H_0\sqrt{\Omega_m(1+z')^3 + \Omega_\Lambda}} \longrightarrow \frac{\text{High sensitivity to cosmological}}{\text{parameters}}$$

This relation depends on cosmological parameters such as : H_0 (Hubble constant), Ω_m (Matter density), Ω_{λ} (Dark energy density), $f_e(z)$ (ionization fraction).

▲ Key Issues

- Model sensitivity: Small changes in model assumptionslead to significant differences in f estimates.
- Parameter degeneracy: Different combinations of parameters can yield similar DM values.
- Circular reasoning: Using cosmological parameters to constrain IGM properties, which in turn affect these parameters.

Cosmology-Independent Method

Source: arXiv:1904.08927 and arXiv:2004.08393

• • Key Idea :

Utilize the ratio (d_L/DM_{IGM}), where (d_L) is the luminosity distance, which is nearly independent of cosmological parameters (e.g., dark energy equation of state).

$$d_{\rm L}/{\rm DM}_{\rm IGM} = R$$

Methodology

- Methodology
- > Parameterize $f_{IGM}(z) = f_{IGM,0}(1 + \alpha z/(1 + z))$ to model redshift evolution.
- > Model the host galaxy's DM contribution (DM_{host}) as a function of star formation rate (SFR).

$$\sigma_{\rm IGM}^2 = \sigma_{\rm obs}^2 + \sigma_{\rm MW}^2 + \sigma_{\rm int}^2$$

 σ_{int} This systematical scatter might originate from the diversity of host galaxy contribution or the IGM fluctuation.

Application to Five Localized FRBs

Data:Five localized FRBs with known redshifts and DMs

©Repeating FRBs:

- FRB 121102
- FRB 180916.J0158+65

Non-repeating FRBs:

- FRB 180924
- FRB 181112
- FRB 190523

Results

Luminosity distances (d_L) inferred from redshifts and type Ia supernova data.

Results

Sample	f_{IGM,0}	DM _{host,loc,0} (pc cm⁻ ³)
All Five Localized FRBs	$0.84^{+0.16}_{-0.22}$	107^{+24}_{-45}
Three Non-Repeating FRBs	$0.74_{-0.18}^{+0.24}$	34^{+39}_{-45}

Key Observations

- •Both analyses yield consistent values around 0.7-0.85, suggesting most baryons reside in the IGM.
- •Non-repeating FRBs show a lower host galaxy DM contribution, possibly indicating different environments.
- •The results support constraints from other cosmological probes while challenging the assumption that $f_{IGM,0}=1$.

Comparison and Implications

Results challenge earlier assumptions of f = 1.0, suggesting a more complex baryon distribution.note:Previous models (e.g., Inoue 2004, Ioka 2003) assumed all baryons reside in the IGM, but our findings indicate a significant fraction (~15-20%) may be in other forms.

Limitations

- ➤ Limited sample size: Five FRBs lead to relatively large uncertainties.
- > Host galaxy modeling: DM_{host} relies on star formation rate assumptions.
- > Systematic errors:Potential biases in luminosity distance measurements.

Future Prospects:

- > Increasing the number of local fast radio bursts and improving precision.
- \triangleright Better redshift measurements and refined DM_{host} models will reduce systematic uncertainties.
- > Larger samples will allow constraints on $f_{IGM}(z)$, shedding light on IGM evolution.

Summary

- > FRBs provide a novel tool for studying the IGM and addressing the missing baryon problem.
- > The cosmology-independent method using the dL/DM ratio yields robust f_{IGM} estimates.

Thanks for your listening!

Please feel free to contact us:

kongjun.zhang@stu.ynu.edu.cn

References

- Li Z, Gao H, Wei J J, et al. Cosmology-independent estimate of the fraction of baryon mass in the IGM from fast radio burst observations[J]. The Astrophysical Journal, 2019, 876(2): 146..
- Li Z, Gao H, Wei J J, et al. Cosmology-insensitive estimate of IGM baryon mass fraction from five localized fast radio bursts[J]. Monthly Notices of the Royal Astronomical Society: Letters, 2020, 496(1): L28-L32.