Reconstructing Intrinsic Stellar Noise with Stellar Chromospheric Activity

Jinghua Zhang, Maosheng Xiang, Jie Yu, et al. 2024.05.10

negative influences of activity in exploration of exoplanets

- Activity-induced RV variation can mimic the Dopler signitures of orbiting planets.
- Stellar activities is one of the sources in the higher than expected noise of the Kepler photometric time series.

Kepler noise metric

- Noise metric for Kepler targets: **CDPP** (Combined Differential Photometric Precision)
- A time series of the effective white noise as seen by a specific transit duration for each target star.

CDPP distributions of *Kepler* targets

Intrinsic detector noise

Poisson + read noise

CDPP distributions of *Kepler* targets

A correlation between CDPP and stellar parameters.

Christiansen et al. 2012

Global Roll Up of Noise Terms

Component	Variance (ppm ²)	Noise (ppm)	Baseline Noise (ppm)
Intrinsic stellar	380.5	19.5	10.0
Poisson + readout	283.0	16.8	14.1
Intrinsic detector	116.2	10.8	10.0
Ouarter dependent	60.1	7.8	
Total	839.8	29.0	20.0

follows from intrinsic stellar noise. Gilliland et al. 2011

The largest factor in the modestly higher than anticipated noise

Intrinsic stellar noise : stellar activity vs. granulation

- The stellar activity dominates at high noise.

The respective fractional contributions are quite similar at low stellar noise.

Dependence of intrinsic noise on stellar activity

Subtracting Poisson noise & Instrumental noise

Intrinsic noise Overall noise

Dependence of intrinsic noise on stellar activity

Measuring activity level

S_{LAMOST}

$$\Gamma = \alpha \cdot \frac{H+K}{R+V}$$

11.5 < *K*p mag < 12.5

- A correlation between CDPP and S-index.

Dependence of intrinsic noise on stellar activity

Zhang et al. 2024

- The median intrinsic rrms CDPP on all timescales distribute mainly in the range of 20–30 ppm at the low-activity end.
- The inactive stars with S-index < 0.22 would be favourable for seletcing targets in future Earth2.0 search missions.

Fitting relations: rrmsCDPP_{intrinsic} = $f(s-index, T_{eff}, \log g, [Fe/H], G)$

Zhang et al. 2024

• The models are around 81%(15h) - 85%(1.5h) accurate on average.

Predicting intrinsic stellar noise for the LAMOST targets

2.4

2.2

1.6 ഉ

Zhang et al. 2024

- The noise levels tend to drop off over time for MS stars.
 - Some stars with relatively low noise levels have entered sub-giant phase.
 - The bulk of less-luminous red giants are generally the noisiest.
- Resultant noise catalog with stellar 1.4 parameters will be invaluable for optimizing target selection for Earth2.0 search missions.

Summary

- Stellar activity has significant impact on photometric observations for exoplanet search.
- There is a strong correlation between intrinsic stellar noise and stellar activity level.
- The inactive host stars with S-index < 0.22 would be favourable for selecting targets in Earth2.0 search missions.
- The instrinsic stellar noise can be predicted with stellar activity level as well as stellar parameters, which is important for Earth2.0 search missions.

Thank !