

Blue stragglers as Tracers of the Dynamical State of Two Clusters in the Small Magellanic Cloud: NGC 339 and NGC 419

https://doi.org/10.3847/1538-4357/ac5406

Reporter: Jiayu QI

2025.10.10

1. Introduction

- Globular Clusters (GCs): gravitational interactions will alter the internal structure.
- Timescale of a cluster dynamical evolution depends on internal (total mass, density, fraction of binaries) and external (tidal interaction and local density).
- Blue Straggler stars (BSSs): brighter and bluer than the MSTO stars in the CMDs; more massive than the normal stars.
- Small Magellanic Cloud (SMC) is an ideal environment because it is populated by several young ($t < 2 \, Gyr$) and intermediate-age clusters ($t = 3 7 \, Gyr$).
- NGC 339 (6 Gyr); NGC 419 (1.5 Gyr).

2. Data analysis

- Multi-epoch observations with HST: 10.75 yr for NGC 339 and 12.67 yr for NGC 419.
- photometric reduction: followed Bellini et al. (2017b, 2018).
- > Performed a single-pass photometry to measure bright stars in each exposure.
- ➤ Performed a multi-pass photometry with *KS2* program after correcting the instrumental positions for geometric distortions with the solutions provided by Anderson & King (2006).
- ➤ Calibrated instrumental magnitudes into *VEGAMAG* systems.

2. Data analysis

- Proper motions (PMs) measurements.
- ➤ Single-exposure star positions are transformed onto an epoch-matched reference frame (based on the Gaia DR2).
- ➤ At first iteration, PMs are assumed to be zero, and cluster members are defined based on their positions on a CMD.
- > For each star, the transformed positions across different epochs are fitted with linear least-squares. The slopes of these fits are direct estimates of the stars PMs.
- Convergence is reached when the difference between the master-frame positions from one step to the next is negligible.
- PMs are corrected for any remaining spatially variable and color-dependent systematic effects.

- Proper motion: to remove the contamination from field stars (SMC+MW).
- Uncertainties are smaller: $m_{F555W} < 22.7$ in NGC 339; $m_{F555W} < 22.3$ in NGC 419.

Fig. 1 Vector point diagram of NGC 339.

Fig. 2 Vector point diagram of NGC 419.

• Cluster members: centered around (0, 0) mas yr^{-1} and within a radius **twice the total**

dispersion of members (sum in quadrature of two independent terms, $\sigma = \sqrt{\sigma_{disp}^2 + \sigma_{PM}^2}$).

- ► **Isotropy:** dispersion along the two PM components coincides with the dispersion along the line of sight (both σ_{disp} correspond to ~0.01 $mas\ yr^{-1}$).
- ho σ_{PM} : select the average value of the PM error at the faintest magnitude ($\sigma_{PM} = 0.05 \ mas \ yr^{-1}$ at $m_{F555W} = 22.7$ for NGC 339; $\sigma_{PM} = 0.03 \ mas \ yr^{-1}$ at $m_{F555W} = 22.3$ for NGC 419).
- $\sigma_{339} = 0.05 \ mas \ yr^{-1}$; $\sigma_{419} = 0.03 \ mas \ yr^{-1}$.

Fig.3 VPD (left) and CMD (right) of NGC 339.

Fig.4 VPD (left) and CMD (right) of NGC 419.

- The level of segregation of BSSs.
- \triangleright Calculated A_{rh}^+ (defined by Alessandrini et al. 2016):

$$A_{rh}^{+}(x) = \int_{x_{min}}^{x} (\phi_{BSS}(x') - \phi_{REF}(x'))dx', \qquad x = \log(r/r_h).$$

The value of A_{rh}^+ increases with the level of segregation of the BSSs: tracing the dynamical evolution of the cluster.

• Selecting BSSs and reference populations (TO stars, RGB stars and RC stars).

• Computing respective the cumulative radial distribution of NGC 339 and NGC 419.

Fig. 7 Cumulative radial distribution of BSSs and reference stars in NGC 339.

• Computing respective the cumulative radial distribution of NGC 339 and NGC 419.

Fig. 8 Cumulative radial distribution of BSSs and reference stars in NGC 419.

• Value of A_{rh}^+ that is consistent with zero within 1σ for each cluster.

For NGC 339:

ref	$A_{ m rh}^{+}$	$\varepsilon_{A^{+}}$	$N_{ m BSS}$	$N_{ m ref}$
TO	0.04	0.05	31	658
RGB	0.03	0.05	31	341
RC	0.04	0.05	31	76

For NGC 419:

ref	$A_{ m rh}^{+}$	$arepsilon_{A}^{+}$	$N_{ m BSS}$	$N_{ m ref}$
TO	0.04	0.07	15	1530
RGB	0.00	0.07	15	234
RC	0.00	0.07	15	554

- BSSs of these two clusters are **not centrally segregated**.
- As expected for two **dynamically young** clusters.

- Studied the relation between the measured values of A_{rh}^+ and the dynamical/structural properties of the systems.
- \triangleright **A correlation** (Ferraro et al. 2018): between A_{rh}^+ and N_{relax} .

$$N_{relax} = t/t_{rc}$$

t: cluster age.

 t_{rc} : central relaxation time of the system

- For NGC 339: $t_{rc} = 4.16 \text{ Gyr}$, t = 6 Gyr and $N_{relax} = 1.44$.
- For NGC 419: $t_{rc} = 1.56 \text{ Gyr}$, t = 1.5 Gyr and $N_{relax} = 0.962$.

Fig 9. Relation between N_{relax} and the A_{rh}^+ for Galactic clusters (black), for LMC clusters (blue).

Fig 10. Relation between r_c and the A_{rh}^+ for Galactic clusters (black), for LMC clusters (blue).

5. Conclusions

- a) Values of A_{rh}^+ consistent with zero for both clusters, indicative of an absence of segregation.
- b) Comparing these results with the dynamical properties of the systems (central relaxation times and core radii), they determined that both clusters are dynamically young.
- c) A_{rh}^{+} parameter is an efficient hand of the "dynamical clock" even for young and intermediate-age clusters.

Thank you!