

Structural parameters, chronological age and dynamical age of the LMC globular cluster NGC 1754

arXiv:2505.10323v1

Reporter: Jiayu QI

2025.05.23

1. Introduction

- Large Magellanic Cloud (LMC): hosts many globular clusters (GCs); provides information about processes of star cluster formation and evolution.
- Size-age conundrum: the youngest clusters (t < 3 Gyr) have compact radii (r_c < 2.5pc), older ones span a range from 2.5 to 10 pc.
- ➤ Alternative explanation: observed spread in core radius of the oldest cluster is result of internal dynamical aging(Ferraro et al. 2019).
- ➤ Mass segregation: the most massive stars tend to transfer kinetic energy to lower-mass objects and sink towards the system's center.

1. Introduction

- Star clusters with the same chronological age can be different stages of internal dynamical evolution.
- "Dynamical clock": an empirical method based on the degree of central segregation of blue straggler stars (BSSs).
- \triangleright A_{rh}^+ : defined as the area enclosed between the cumulative radial distribution of BSSs and that of a reference population within one half-mass radius (r_h) from cluster center.

Globular cluster NGC 1754

- ➤ A new set of optical and UV high-resolution HST images
- ➤ A very old chronological age: t ~ 15 Gyr (Mackey & Gilmore 2003)
- ightharpoonup A very compact core radius: $r_c = 0.88$ pc (Mackey & Gilmore 2003)
- \triangleright [Fe/H] \sim -1.45 (Mucciarelli et al. 2021)

2. Data analysis

- 16 high-resolution images taken by HST's WFC3(in the near-UV F300X, F606W, and F814W).
- 13 images taken by HST's ACS in F606W and F814W, sampling a field region.
- Data reduction: DAOPHOT II (Stetson 1987).
- Apply the standard calibration process, converting the magnitudes to the VEGAMAG reference system.
- Obtained absolute coordinate system(α , δ): using the coefficients for WFC3 and ACS, the catalogs were astrometrized by cross-correlation with a Gaia DR3 of the same area.

2. Data analysis

Fig. 1 CMD of NGC 1754 obtained from the data reduction of the WFC3 dataset in all the filter combinations.

Fig. 2 CMD of the field region obtained from the data reduction of the ACS dataset.

3.1 Chronological age, reddening and distance modulus

- Determined the chronological age: an isochrone fitting that compares the observed CMD of the cluster with a set of isochrones by using **Bayesian method**.
- ► **BASTI isochrones:** downloaded with standard helium abundance (Y = 0.25) and $[\alpha/Fe] = +0.4$, for ages from 9.0 to 14.0 Gyr, and [Fe/H] from -1.8 to -0.95.
- ➤ Key comparison: between the CMD and the isochrones around the MSTO, SGB and lower portion of the RGB.
- Gaussian prior distribution: 1) [Fe/H] = -1.45 \pm 0.05 (Mucciarelli et al. 2021); 2) color excess E(B-V) = 0.13 \pm 0.02 and distance modulus (m M)₀=18.58 \pm 0.05.

3.1 Chronological age, reddening and distance modulus

Fig. 3 Best-fit BASTI isochrone of NGC 1754 by red solid line. The orange-shaded envelope represents the 1σ uncertainty region of the best-fit isochrone.

Uncertainties of best-fit values are determined by calculating the 16th and 84th percentiles of each parameter's probability distribution in MCMC procedure.

3.2 Density profile and structural parameters

- Averaged the **plateau points** to obtain the value of the field star density, and then subtracted this value from each bin to obtain the field-decontaminated cluster profile.
- King model fit (King 1966).

Fig. 4 The projected density profile of NGC 1754. The horizontal dashed line represents the mean LMC field density.

3.3 Measuring the dynamical age

• "dynamical clock": evaluate the system's dynamical state by analyzing the degree of central segregation of BSSs compared to a lighter-mass reference population.

> Select sample

Fig. 5 Selections of the BSS and RGB samples.

3.3 Measuring the dynamical age

- Measure A_{rh}^+ : Cumulative radial distribution of both BSS and RGB samples.
- The value of A_{rh}^+ : the area enclosed between the cumulative radial distribution of the BSS and that of RGB sample.

$$A^{+}(x) = \int_{x_{min}}^{x} \phi_{BSS}(x') - \phi_{REF}(x')dx'$$
 (Lanzoni et al. 2016)

Fig. 6 The normalized cumulative radial distributions of BSSs (blue line) and RGB stars (red line).

4. Discussion

- The chronological age of NGC 1754 ($t = 12.8 \pm 0.4$ Gyr): consolidates the beginning of the GC formation process is contemporaneous in the MW and the LMC.
- The value of A_{rh}^+ (0.31 \pm 0.07): an advanced dynamical stage; seems to flag the core collapse.

 N_{relax} : ratio between the chronological age of cluster and its central relaxation time.

Fig. 7 Left panel: the relation between N_{relax} and A_{rh}^+ ; right panel: between r_c and A_{rh}^+ for star clusters analyzed using the dynamical clock method.

 $A_{rh}^+ = 0.3$ (threshold)

5. Conclusions

- NGC 1754 is very compact GC ($r_c = 0.84 \ pc$).
- NGC 1754 has a very old age ($t = 12.8 \pm 0.4$ Gyr):consolidates the process of GC formation started at the same cosmic time in the LMC and MW.
- The value of A_{rh}^+ for NGC 1754 (A_{rh}^+ = 0.31 \pm 0.07): the highest measured so far for LMC cluster; has an advanced dynamical age; possibly on the verge of core collapse.
- Natural dynamical evolution of globular clusters plays a role in shaping the age-core radius distributions observed in the LMC.

Thanks!