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Introduction

* We can use the Milky Way and 1ts resolved Galactic components as a
laboratory to answer questions about Galactic evolution and
characterize the hierarchical formation (Davis et al. 1985) of the Milky

Way.

* One of the most prominent trends in the Milky Way 1s the existence of
the negative radial and vertical metallicity gradients.

* These gradients could provide supporting evidence for certain
formation theories of the Milky Way, such as the ‘inside-out’
formation theory (Larson 1976).

* Chemical azimuthal
previously identified

' substructure 1in the Milky Way has been
| using a variety of different tracers such as Hii

regions and Cepheid

S.
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Figure 1. The face-on (top) and edge-on (bottom) distri-

bution of our thin disk sample of 202,510 stars in which the lllty > 80%,

the hexagonal bins are colored by the logarithmic number

of stars. The black contours in the top panel are the spiral wi 11’1 Flgure 1 .

arms of the Milky Way determined by Reid et al. (2019). 4
The orange star in both panels represents the Sun.
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Figure 2. The [Fe/H] abundances with respect to Galacto-
centric radius of our planar thin disk sample. The artifact at
R ~ 8 kpc is an observational effect of the over-representation
of stars in the solar neighborhood. We fit a linear model to
the colored data points (column-normalized planar thin disk
sample) which is represented by the grey line. From this, we
obtain a metallicity gradient of A[Fe/H]/AR -0.066+0.0004
dex/kpc and a y-intercept of 0.546 dex for the stars in our
planar thin disk sample.
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Figure 3. The radial metallicity gradient as a function of
absolute vertical height Z above (and below) the plane. The
gradient derived in this work is represented by the black dots,
compared to a variety of other studies that use different trac-
ers [Cheng et al. (2012) (purple triangles), Hawkins (2022)
(blue triangles), Hayden et al. (2014) (pink squares), Yan
et al. (2019) (green squares)]. Consistently, A[Fe/H]/AR
starts off at its most negative in the plane and shallows out
with greater distances from the disk. A vertical line is plot-
ted at A[Fe/H]/AR=0 to illustrate where the radial gradient
is no longer negative. The points derived in this work lie gen-
erally in the middle of the other studies conducted.



Metallicity Gradients

* We find that the vertical metallicity gradient 1s heavily correlated with
Galactocentric radius in that A[Fe/H]/AZ approaches zero with
increasing distance from the Galactic center.
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Figure 4. The vertical metallicity gradient as a function

of Galactocentric radius. The gradient derived in this work 10.5 -0.0951 0.0026 22099
is depicted by black dots, whereas the other colored points

represent the gradient as determined by different tracers in 11.5 -0.0632 0.0028 14729
other studies [Hayden et al. (2014) (pink squares), Hawkins _ ) . o
(2022) (blue traingles), Nandakumar et al. (2020) (purple 12.5 -0.0617 0.0030 8025
triangles), Yan et al. (2019) (green squares)]. The verti- 13.4 -0.0518 0.0034 3090

cal metallicity gradient is at its most negative closest to the
Galactic center and shallows out (A[Fe/H|/AZ approaches

0) as distance increases.




* We follow the steps outlined in Section 3 and compute the model

Azimuthal Variations in A[Fe/H]/AR

linear A[Fe/H]/AR gradient throughout the disk.
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Figure 5. Left: The full APOGEE planar thin disk sample colored by the metallicity. Middle: Each position of the data
points colored by a model gradient of A[Fe/H|/AR = —0.066 + 0.546 dex/kpc. Right: the residuals of the observed [Fe/H]
abundances and the linear model abundances.



* To probe different formation pathways for this oscillating pattern, we

first compare these results with the location of the spiral arms.
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X (k Figure 6. The azimuthal metallicity variations (4[Fe/H] in

( pC) the last panel of Figure 5) as compared to different deter-
minations of the spiral arms. The black contours in the top
panel represent the spiral arms as derived by Poggio et al.
(2021) using main sequence stars in Gaia and the solid black
lines in the bottom panel are the spiral arms as determined
by Reid et al. (2019) using high-mass star-forming regions.



Azimuthal Variations in Other Elements

* Here, we explore azimuthal variations in [Fe/H] and a- elements (O,
Mg, S1, S, Ca) 1n our planar thin disk sample.
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radial gradient. The second panel represents the average [a/Fe] abundance, with the individual a-elements in the following
panels. The elements with the most saturated contours, such as [Fe/H], showcase the most exaggerated deviation from the
radial gradients. The a-elements appear to be loosely anti-correlated with [Fe/H], following predictions from the difference in
timescales between events that mainly produce a-elements (Type II SN) and events that mainly produce [Fe/H] (Type Ia SN).



Azimuthal Metallicity Variations by Age

* Visually, the signatures seem to be the strongest in the panel

containing the oldest stars, while the deviations lessen 1n intensity with
decreasing age.
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Figure 8. This figure is similar to Panel 3 of Figure 5 increasing age groups of 0 —2,3 — 6, and 6+ Gyr from left to right with
8730, 18493 and 5545 stars respectively. The color bars are constant throughout all panels, thus the youngest age group has the
least amount of contrast and represents the smallest deviations from the linear gradient. Conversely, the oldest age group has
the most saturated colors due to the larger variations from the modelled linear gradient.
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Linking Chemlstry to Dynamics

In the first and third panels
of Figure 10, we see larger

|0[Fe/H]| at higher
eccentricities and radial
actions. This

implies that blurring
(heating of orbits)
contributes a non-
negligible amount to the
mechanisms that are
causing these observed
azimuthal metallicity
variations.
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Figure 10. The correlation between absolute metallicity excess (|§[Fe/H]|) on the y axes and different dynamical properties
on the x axes. The hexagonal bins are colored by density with the pink stars representing the running medians in each panels
with error bars showing the standard deviation. In the J, and eccentricity panels, we see a clear increasing trend hinting that
stars with high eccentricities and high radial actions contribute to the variations with the largest magnitudes. 12



Summary

* We aim to confirm the [Fe/H] azimuthal variations in APOGEE DR17,
characterize how the variations interplay with stellar age, identify if
azimuthal variations exist in elements other than [Fe/H], and attempt to
link the azimuthal variations to dynamical properties.

* A radial metallicity gradient (A[Fe/H]/AR) of ~—0.066 £ 0.0004 dex/kpc
1s found throughout the kinematic thin disk of the Milky Way.

* Azimuthal variations are found throughoutthe disk in [Fe/H].

* Azimuthal substructure varies by stellar age. Older populations exhibit
more extreme deviations from the radial metallicity gradient than seen in
younger and intermediate populations.



Summary

* There 1s a positive trend between |0[Fe/H]| and Jr, as well as [o[Fe/H]|
and eccentricity. Hinting that blurring 1s an important dynamical
process in the production of azimuthal [Fe/H] variations.



